
International Journal of Technology Research and Management

ISSN (Online): 2348-9006

Vol 1 Issue 1 March 2014

Paper ID: IJTRM/01/01/1042 1

Framework for Query optimization

Pawan Meena

Department of Computer Science and Engineering Patel college of science & Technology

Bhopal,M.P,INDIA

pawanmeena75@yahoo.com

ABSTRACT:- Modern database systems use a query optimizer to identify the most efficient

strategy, called “plan”, to execute declarative SQL queries. Optimization is much more than

transformations and query equivalence. The infrastructure for optimization is significant.

Designing effective and correct SQL transformations is hard. Optimization is a mandatory

exercise since the difference between the cost of the best plan and a random choice could be in

orders of magnitude. The role of query optimizers is especially critical for the decision-support

queries featured in data warehousing and data mining applications. This paper presented an

abstraction of the architecture of a query optimizer and focused on the techniques currently used

by most commercial systems for its various modules. In aaddition, provide technical constraint

of advanced issues in query optimization.

Keywords:- Query optimizer ,Operator tree, Query analyzer, Query optimization

1. INTRODUCTION

For significantly improve application development

and user productivity, relational database technology

growing success in the treatment of data is

appropriate in part to the availability of non-

procedural languages. By hiding the low-level details

about the physical organization of the data, relational

database languages allow the expression of complex

queries in a concise and simple fashion. In particular,

to build the answer to the query, the user does not

exactly specify the procedure. This procedure is in

fact designed by a DBMS module, known as query

processor. This relieves the user to query

optimization, a tedious task that is managed correctly

by the query processor. Modern databases can

provide tools for the effective treatment of large

amounts of complex scientific data involving the

application of specific analysis [1, 2]. Scientific

analysis can be specified as high-level requests user-

defined functions (UDFs) in an extensible

DBMS. The query optimization provides scalability

and high performance without the need for

researchers to spend time on low-level

programming. Moreover, as the queries are specified

and easily changed, new theories, for example

implemented as filters, can be tested quickly.

Queries about events are complex, because the cuts

are complex with many predicates applied to the

properties of each event. The conditions of the

query involving selections, arithmetic operators,

aggregates, UDF, and joins. The aggregates compute

complex derived event properties. For example, a

complex query is to look for event production Higgs

bosons [1, 3] by applying scientific

theories expressed cuts. These complex queries need

to be optimized for the efficient

and scalable. However, the optimization of complex

queries is a challenge because:

• The queries contain many joins.

• The size of the queries makes optimization slow.

• The cut definitions contain many more or less

complex aggregates.

• The filters defining the cuts use many numerical

UDFs.

• There are dependencies between event properties

that are difficult to find or model.

mailto:pawanmeena75@yahoo.com

International Journal of Technology Research and Management

ISSN (Online): 2348-9006

Vol 1 Issue 1 March 2014

Paper ID: IJTRM/01/01/1042 2

• The UDFs cause dependencies between query

variables.

Figure 1: Query Optimizer

Relational query languages provide a high

level "declarative" interface to access data stored

in relational databases. Over time, SQL [1,4] has

emerged as the standard for relational query

languages. Two key elements of the component of

the evaluation of a system for querying SQL

databases are the query optimizer and execution

engine queries. The query execution engine

implements a set of physical operators. An operator

takes as input one or more data streams and produces

an output data stream. Examples of operators are

physical (external) sorting, sequential analysis, index

analysis, nested loop join and sort-merge join. We

refer to operators such as physical operators since

they are not necessarily related one by one with the

relational operators. The easiest way to think

of physical operators is like pieces of code that are

used as building blocks to enable the execution

of SQL queries. An abstract representation of such

a performance is a physical operator tree, as shown in

Figure 2. The edges in an operator tree represent

the flow of data between the physical operators.

We use the terms physical

operator tree and execution plan (or simply plan)

interchangeably. The execution engine is responsible

for implementing the plan resulting generate

responses to the request. Therefore, the Capabilities

of the query execution engine to determine the

structure of the operator trees that are

practicable. We refer the reader to [5] for an

overview of the technical evaluation of the

query. The query optimizer is responsible for

producing the input for the execution engine. It takes

a parsed representation of an SQL query as input

and is responsible for producing an efficient

execution plan for the given SQL query in the space

of possible execution plans. The task

of an optimizer is nontrivial since for a given SQL

query, there may be many operator trees possible:

• The algebraic representation of the data query can

be transformed into many other logically equivalent

algebraic representations: for example,

 Join (Join (P, Q), R) = Join (Join (Q, R), P)

• For a given algebra representation, there can

be many operator trees that the operator algebraic

expression to perform, for example, in general, there

are several algorithms supported them in a system

database. In addition, the current or the response time

for the implementation of these plans is very

different. Therefore, a choice of execution by the

optimization program is crucial. For instance, query

Index Nested Loop

(P,z=R,z)

Merge_Join

(Pz=Qz)

Index Scan R

Merge_Join

(Pz=Qz)

Merge_Join

(Pz=Qz)

 Table Scan P

Table Scan Q

Figure 2: Physical Operator Tree

International Journal of Technology Research and Management

ISSN (Online): 2348-9006

Vol 1 Issue 1 March 2014

Paper ID: IJTRM/01/01/1042 3

optimizations are regarded as difficult search. To

solve this problem, we need:

• A space of plans (search space).

• A cost estimation technique so that a cost may be

assigned to each plan in the search space. Intuitively,

this is an estimation of the resources needed for the

execution of the plan.

• An enumeration algorithm that can search through

the execution space A desirable optimizer is one

where the search space includes plans

to lower costs, the costing technique is correct and

the enumeration algorithm eff- icient. Each of

these tasks is nontrivial and that is why building

a good optimizer is a huge undertaking.

The path through a query to a DBMS is generated by

its reaction is shown in Figure 3.The modules of the

system, allowing it to move the following functions.

The Query Analyzer checks the validity of the

query; it creates an internal form, usually

an expression of the relational calculus or something

similar. The query optimizer considers

all algebraic expressions that are equivalent to the

given query and choose one that is estimated to

be less expensive. The code generator

or interpreter changes the map generated by the

optimizer calls the query processor.

2. QUERY OPTIMIZATION

ARCHITECTURE

In this section, we provide an abstraction of the query

optimization process in a DBMS. Given a database

and a query on it, several execution plans exist that

can be employed to answer the query. In principle, all

the alternatives need to be considered so that the one

with the best estimated performance is chosen. An

abstraction of the process of generating and testing

these alternatives is shown in Figure 4, which is

essentially a modular architecture of a query

optimizer. Although one could build an optimizer

based on this architecture, in real systems, the

modules shown do not always have so clear-cut

boundaries as in Figure 4. Based on Figure 4, the

entire query optimization process can be seen as

having two stages: rewriting and planning [6]. There

is only one module in the first stage, the Rewriter,

whereas all other modules are in the second stage.

The functionality of each of the modules in Figure 4

is analyzed below

Figure 4: Query optimizer architecture

2.1 Revise

This module applies transformations to a given query

and produces similar questions that are hopefully

more effective, for example, replacement of thought

with their definition, to attend nested queries, etc.

The processing is done by the author only

on the declarative, that is, static the characteristics

of requests and do not take into account the actual

 Query Analyzer

Query Optimizer

Code Generator

/Interpreter

Query Processor

 Figure 3: Query traverses through DBMS

International Journal of Technology Research and Management

ISSN (Online): 2348-9006

Vol 1 Issue 1 March 2014

Paper ID: IJTRM/01/01/1042 4

cost for the specific question DBMS and the

database in question. If rewriting is known or

assumed always positive, the initial request is

ignored, otherwise sent to the next as well. The

nature of the transformations to rewrite this

step occurs in declarative level [6].

2.2 Schemer

 This is the main module of the ordering

stage. Examine all possible execution plans for each

query generated in the previous step and selects

the best global market to be used for the reaction to

generate the original query. It employs a research

strategy that examines the space of execution plans in

a particular fashion. This is determined by two other

modules of the optimizer, space and space-mode

algebraic structure. Most of these modules

and the search strategy to the cost, i.e., work time, the

optimizer itself, which should be as low

as possible to determine. The implementations of the

plans reviewed by the planner are compared in terms

of their cost estimates so that the cheapest may be

chosen. These costs are calculated by the

last two modules of the optimizer, the cost

model and the estimator-Size allocation.

2.3 Statistical Space

This module determines the action execution orders

that are to be considered by the Planner for each

query sent to it. All such series of actions produce the

same query answer, but usually differ in

performance. They are usually represented in

relational algebra as formulas or in tree form.

Because of the algorithmic nature of the objects

generated by this module and sent to the Planner, the

overall planning stage is characterized as operating at

the procedural level.

2.4 Structural Space

This module determines the choice

of performance that exists for the execution of each

set of actions ordered by the field of statistics. This

choice is related to the join methods are available for

each joint (eg, nested loop, scan and hash them

together), as supporting data structures are built

on them if / when duplicates are eliminated, and the

characteristics of other implementation of

this kind, which are determined by the performance

of the DBMS. This choice is also linked to

 evidence any relationship, which is determined

by the physical schema of each database stored in its

catalog entry Given a Statistical formula or tree from

the Statistical Space, this module produces all

corresponding complete execution plans, which

specify the implementation of each algebraic operator

and the use of any indices [6].

2.5 Cost Model

This module specify the mathematical formulas that

are used to approximate the cost of execution plans.

For every different join method, for every different

index type access, and in general for every different

kind of step that can be found in an execution plan,

there is a formula that gives its cost. Given the

complexity of many of these steps, most of these

formulas are simple approximations of what the

system actually does and are based on certain

assumptions regarding issues like buffer

management, disk-cpu overlap, sequential vs. random

I/O, etc. The most important input parameters to a

formula are the size of the buffer pool used by the

corresponding step, the sizes of relations or indices

accessed, and possibly various distributions of values

in these relations. While the first one is determined

by the DBMS for each query, the other two are

estimated by the Size- allocation Estimator.

2.6 Size- Allocation Estimator

This module specifies how the sizes (and possibly

frequency distributions of attribute values) of

database relations and indices as well as (sub) query

results are estimated. As mentioned above, these

estimates are needed by the Cost Model. The specific

estimation approach adopted in this module also

determines the form of statistics that need to be

maintained in the catalogs of each database, if any [6]

3. ADVANCED TYPES OF

OPTIMIZATION

In this section, we attempt to provide a concise sight

of advanced types of optimization that researchers

have proposed over the past few years. The

descriptions are based on examples only; further

details may be found in the references provided.

Furthermore, there are several issues that are not

discussed at all due to lack of space, although much

International Journal of Technology Research and Management

ISSN (Online): 2348-9006

Vol 1 Issue 1 March 2014

Paper ID: IJTRM/01/01/1042 5

interesting work has been done on them, e.g., nested

query optimization, rule-based query optimization,

query optimizer generators ,object-oriented query

optimization, optimization with materialized views,

heterogeneous query optimization, recursive query

optimization, aggregate query optimization,

optimization with expensive selection predicates, and

query optimizer validation. Before presenting

specific technique consider the following simple

relation EMP (empid ,salary, job, department, dno) ,

DEPT(dno, budget,)

3.1 Semantic Query Optimization

Semantic query optimization is a form of

optimization mostly related to the Rewriter module.

The basic idea lies in using integrity constraints

defined in the database to rewrite a given query into

semantically equivalent ones [7]. These can then be

optimized by the Planner as regular queries and the

most efficient plan among all can be used to answer

the original query. As a simple example, using a

hypothetical SQL-like syntax, consider the following

integrity constraint:

assert sal-constraint on emp:

salary>200K where job = “Assistant professor"

In addition consider the following query:

select empid, subject

from emp, dept

where emp.dno = dept.dno and job = “Assistant

professor".

Using the above integrity constraint, the query can be

rewritten into a semantically equivalent one to

include a selection on sal:

select empid, subject

from emp, dept

where emp.dno = dept.dno and job = “Assistant

professor" and salary>200K.

Having the extra selection could help extremely in

discovery a fast plan to answer the query if the only

index in the database is a B+-tree on emp.sal. On the

other hand, it would certainly be a waste if no such

index exists. For such reasons, all proposals for

semantic query optimization present various

heuristics or rules on which rewritings have the

potential of being beneficial and should be applied

and which not.

3.2 Global Query Optimization

So far, we have focused our attention to optimizing

individual queries. Quite often, however, multiple

queries become available for optimization at the same

time, e.g., queries with unions, queries from multiple

concurrent users, queries embedded in a single

program, or queries in a deductive system. Instead of

optimizing each query separately, one may be able to

obtain a global plan that, although possibly

suboptimal for each individual query, is optimal for

the execution of all of them as a group. Several

techniques have been proposed for global query

optimization [8].

As a simple example of the problem of global

optimization consider the following two queries:

select empid, subject

from emp, dept

where emp.dno = dept.dno and job = “Assistant

professor ",

select empid

from emp, dept

where emp.dno = dept.dno and budget > 1M

Depending on the sizes of the emp and dept relations

and the selectivity’s of the selections, it may well be

that computing the entire join once and then applying

separately the two selections to obtain the results of

the two queries is more efficient than doing the join

twice, each time taking into account the

corresponding selection. Developing Planner

modules that would examine all the available global

plans and identify the optimal one is the goal of

global/multiple query optimizers.

3.4 Parametric Query Optimization

As mentioned earlier, embedded queries are typically

optimized once at compile time and are executed

multiple times at run time. Because of this temporal

separation between optimization and execution, the

values of various parameters that are used during

optimization may be very different during execution.

This may make the chosen plan invalid (e.g., if

indices used in the plan are no longer available) or

simply not optimal (e.g., if the number of available

buffer pages or operator selectivity’s have changed,

or if new indices have become available). To address

this issue, 31several techniques [9,10,11] have been

International Journal of Technology Research and Management

ISSN (Online): 2348-9006

Vol 1 Issue 1 March 2014

Paper ID: IJTRM/01/01/1042 6

proposed that use various search strategies (e.g.,

randomized algorithms [10] or the strategy of

Volcano [11]) to optimize queries as much as

possible at compile time taking into account all

possible values that interesting parameters may have

at run time. These techniques use the actual

parameter values at run time, and simply pick the

plan that was found optimal for them with little or no

overhead. Of a drastically different flavor is the

technique of Rdb/VMS [12], where by dynamically

monitoring how the probability distribution of plan

costs changes, plan switching may actually occur

during query execution.

4. CONCLUSION

To a large extent, the success of a DBMS lies in the quality,

functionality, and sophistication of its query optimizer,

since that determines much of the system's performance. In

this paper, we have given a bird's eye view of query

optimization. We have presented an abstraction of the

architecture of a query optimizer and focused on the

techniques currently used by most commercial systems for

its various modules. In addition, we have provided a

glimpse of advanced issues in query optimization, whose

solutions have not yet found their way into practical

systems, but could certainly do so in the future.

REFERENCES

[1] J. Gray, D.T. Liu, M.A. Nieto-Santisteban, A. Szalay,

D.J. DeWitt, and G. Heber, "Scientific data

management in the coming decade”, SIGMOD

Record 34(4), pp. 34-41, 2005.

[2] Ruslan Fomkin and Tore Risch 1997 “Cost-based

Optimization of Complex Scientific Queries”,

Department of Information Technology, Uppsala

University

[3] C. Hansen, N. Gollub, K.Assamagan, and T. Ekelöf,

“Discovery potential for a charged Higgs boson

decaying in the chargino-neutralino channel of the

ATLAS detector at the LHC”, Eur.Phys.J. C44S2, pp.

1-9, 2005.

[4] Melton, J., Simon A. Understanding The New SQL: A

Complete

[5] Graefe G. Query Evaluation Techniques for Large

Databases. In ACM Computing Surveys: Vol 25, No

2., June 1993.

[6] Yannis E. Ioannidis,” Query optimization” Computer

Sciences Department,University of Wisconsin

Madison, WI 53706

[7] J. J. King. Quits: A system for semantic query

optimization in relational databases. In Proc. of the 7th

Int. VLDB Conference , pages 510{517, Cannes,

France, August 1981.

[8] T. Cells. Multiple query optimization. ACM-TODS,

13(1):23{52, March 1988.

[9] G. Graefe and K. Ward. Dynamic query evaluation

plans. In Proc. ACM-SIGMOD Conference on the

Management of Data, pages 358-366, Portland, OR,

May 1989.

[10] Y. Ioannidis, RNg, K. Shim, and T. K. Sellis.

Parametric query optimization. In Proc. 18th Int.

VLDB Conference, pages 103{114, Vancouver, BC,

August 1992.

[11] R. Cole and G. Graefe. Optimization of dynamic

query evaluation plans. In Proc .ACM-SIGMOD

Conference on the Management of Data, pages

150{160, Minneapolis,MN, June 1994.

[12] G. Antoshenkov. Dynamic query optimization in

Rdb/VMS. In Proc. IEEE Int. Coference on Data

Engineering, pages 538{547, Vienna, Austria, March

1993.

http://www.ask.com/web?q=T.+Cells.+Multiple+query+optimization.+ACM-TODS%2C+13%281%29%3A23%7B52%2C+March+1988.&qsrc=19&o=14988&l=dis
http://www.ask.com/web?q=T.+Cells.+Multiple+query+optimization.+ACM-TODS%2C+13%281%29%3A23%7B52%2C+March+1988.&qsrc=19&o=14988&l=dis
http://www.ask.com/web?q=Y.+Ioannidis%2C+RNg%2C+K.+Shim%2C+and+T.+K.+Sellis.+Parametric+query+optimization.+In+Proc.+18th+Int.+VLDB+Conference%2C+pages+103%7B114%2C+Vancouver%2C+BC%2C+August+1992.&qsrc=19&o=14988&l=dis
http://www.ask.com/web?q=Y.+Ioannidis%2C+RNg%2C+K.+Shim%2C+and+T.+K.+Sellis.+Parametric+query+optimization.+In+Proc.+18th+Int.+VLDB+Conference%2C+pages+103%7B114%2C+Vancouver%2C+BC%2C+August+1992.&qsrc=19&o=14988&l=dis
http://www.ask.com/web?q=Y.+Ioannidis%2C+RNg%2C+K.+Shim%2C+and+T.+K.+Sellis.+Parametric+query+optimization.+In+Proc.+18th+Int.+VLDB+Conference%2C+pages+103%7B114%2C+Vancouver%2C+BC%2C+August+1992.&qsrc=19&o=14988&l=dis
http://www.ask.com/web?q=Y.+Ioannidis%2C+RNg%2C+K.+Shim%2C+and+T.+K.+Sellis.+Parametric+query+optimization.+In+Proc.+18th+Int.+VLDB+Conference%2C+pages+103%7B114%2C+Vancouver%2C+BC%2C+August+1992.&qsrc=19&o=14988&l=dis

