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ABSTRACT:- Modern database systems use a query optimizer to identify the most efficient 

strategy, called “plan”, to execute declarative SQL queries. Optimization is much more than 

transformations and query equivalence. The infrastructure for optimization is significant. 

Designing effective and correct SQL transformations is hard. Optimization is a mandatory 

exercise since the difference between the cost of the best plan and a random choice could be in 

orders of magnitude. The role of query optimizers is especially critical for the decision-support 

queries featured in data warehousing and data mining applications. This paper presented an 

abstraction of the architecture of a query optimizer and focused on the techniques currently used 

by most commercial systems for its various modules. In aaddition, provide technical constraint 

of advanced issues in query optimization. 
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1. INTRODUCTION 

For significantly improve application development 

and user productivity, relational database technology 

growing success in the treatment of data is 

appropriate in part to the availability of non-

procedural languages. By hiding the low-level details 

about the physical organization of the data, relational 

database languages allow the expression of complex 

queries in a concise and simple fashion. In particular, 

to build the answer to the query, the user does not 

exactly specify the procedure. This procedure is in 

fact designed by a DBMS module, known as query 

processor. This relieves the user to query 

optimization, a tedious task that is managed correctly 

by the query processor. Modern databases can 

provide tools for the effective treatment of large 

amounts of complex scientific data involving the 

application of specific analysis [1, 2]. Scientific 

analysis can be specified as high-level requests user-

defined functions (UDFs) in an extensible 

DBMS. The query optimization provides scalability 

and high performance without the need for 

researchers to spend time on low-level 

programming. Moreover, as the queries are specified 

and easily changed, new theories, for example 

implemented as filters, can be tested quickly. 

Queries about events are complex, because the cuts 

are complex with many predicates applied to the 

properties of each event. The conditions of the 

query involving selections, arithmetic operators, 

aggregates, UDF, and joins. The aggregates compute 

complex derived event properties. For example, a 

complex query is to look for event production Higgs 

bosons [1, 3] by applying scientific 

theories expressed cuts. These complex queries need 

to be optimized for the efficient 

and scalable. However, the optimization of complex 

queries is a challenge because: 

• The queries contain many joins. 

• The size of the queries makes optimization slow. 

• The cut definitions contain many more or less 

complex aggregates. 

• The filters defining the cuts use many numerical 

UDFs. 

• There are dependencies between event properties 

that are difficult to find or model. 
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• The UDFs cause dependencies between query 

variables. 

 

 

Figure 1: Query Optimizer 

Relational query languages  provide a high 

level "declarative" interface to access data stored 

in relational databases. Over time, SQL [1,4] has 

emerged as the standard for relational query 

languages. Two key elements of the component of 

the evaluation of a system for querying SQL 

databases are the query optimizer and execution 

engine queries. The query execution engine 

implements a set of physical operators. An operator 

takes as input one or more data streams and produces 

an output data stream. Examples of operators are 

physical (external) sorting, sequential analysis, index 

analysis, nested loop join and sort-merge join. We 

refer to operators such as physical operators since 

they are not necessarily related one by one with the 

relational operators. The easiest way to think 

of physical operators is like pieces of code that are 

used as building blocks to enable the execution 

of SQL queries. An abstract representation of such 

a performance is a physical operator tree, as shown in  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. The edges in an operator tree represent 

the flow of data between the physical operators. 

We use the terms physical 

operator tree and execution plan (or simply plan) 

interchangeably. The execution engine is responsible 

for implementing the plan resulting generate 

responses to the request. Therefore, the Capabilities   

of the query execution engine to determine the 

structure of the operator trees that are 

practicable. We refer the reader to [5] for an 

overview of the technical evaluation of the 

query. The query optimizer is responsible for 

producing the input for the execution engine. It takes 

a parsed representation of an SQL query as input 

and is responsible for producing an efficient 

execution plan for the given SQL query in the space 

of possible execution plans. The task 

of an optimizer is nontrivial since for a given SQL 

query, there may be many operator trees possible: 

• The algebraic representation of the data query can 

be transformed into many other logically equivalent 

algebraic representations: for example, 

        Join (Join (P, Q), R) = Join (Join (Q, R), P) 

• For a given algebra representation, there can 

be many operator trees that the operator algebraic 

expression to perform, for example, in general, there 

are several algorithms supported them in a system 

database. In addition, the current or the response time 

for the implementation of these plans is very 

different. Therefore, a choice of execution by the 

optimization program is crucial. For instance, query 
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optimizations are regarded as difficult search. To 

solve this problem, we need: 

• A space of plans (search space). 

• A cost estimation technique so that a cost may be 

assigned to each plan in the search space. Intuitively, 

this is an estimation of the resources needed for the 

execution of the plan. 

• An enumeration algorithm that can search through 

the execution space A desirable optimizer is one 

where the search space includes plans 

to lower costs, the costing technique is correct and 

the enumeration algorithm eff- icient. Each of 

these tasks is nontrivial and that is why building 

a good optimizer is a huge undertaking. 

 
The path through a query to a DBMS is generated by 

its reaction is shown in Figure 3.The modules of the 

system, allowing it to move the following functions. 

The Query Analyzer checks the validity of the 

query; it creates an internal form, usually 

an expression of the relational calculus or something 

similar. The query optimizer considers 

all algebraic expressions that are equivalent to the 

given query and choose one that is estimated to 

be less expensive. The code generator 

or interpreter changes the map generated by the 

optimizer calls the query processor. 

2. QUERY OPTIMIZATION 

ARCHITECTURE 

In this section, we provide an abstraction of the query 

optimization process in a DBMS. Given a database 

and a query on it, several execution plans exist that 

can be employed to answer the query. In principle, all 

the alternatives need to be considered so that the one 

with the best estimated performance is chosen. An 

abstraction of the process of generating and testing 

these alternatives is shown in Figure 4, which is 

essentially a modular architecture of a query 

optimizer. Although one could build an optimizer 

based on this architecture, in real systems, the 

modules shown do not always have so clear-cut 

boundaries as in Figure 4. Based on Figure 4, the 

entire query optimization process can be seen as 

having two stages: rewriting and planning [6]. There 

is only one module in the first stage, the Rewriter, 

whereas all other modules are in the second stage. 

The functionality of each of the modules in Figure 4 

is analyzed below 

 

  

Figure 4: Query optimizer architecture 

2.1 Revise 

This module applies transformations to a given query 

and produces similar questions that are hopefully 

more effective, for example, replacement of thought 

with their definition, to attend nested queries, etc. 

The processing is done by the author only 

on the declarative, that is, static the characteristics 

of requests and do not take into account the actual 

   Query Analyzer 

Query Optimizer 

Code Generator 

/Interpreter 

Query Processor 

   Figure 3: Query traverses through DBMS 
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cost for the specific question DBMS and the 

database in question. If rewriting is known or 

assumed always positive, the initial request is 

ignored, otherwise sent to the next as well. The 

nature of the transformations to rewrite this 

step occurs in declarative level [6]. 

2.2 Schemer 

 This is the main module of the ordering 

stage. Examine all possible execution plans for each 

query generated in the previous step and selects 

the best global market to be used for the reaction to 

generate the original query. It employs a research 

strategy that examines the space of execution plans in 

a particular fashion. This is determined by two other 

modules of the optimizer, space and space-mode 

algebraic structure. Most of these modules 

and the search strategy to the cost, i.e., work time, the 

optimizer itself, which should be as low 

as possible to determine. The implementations of the 

plans reviewed by the planner are compared in terms 

of their cost estimates so that the cheapest may be 

chosen. These costs are calculated by the 

last two modules of the optimizer, the cost 

model and the estimator-Size allocation. 

2.3 Statistical Space 

This module determines the action execution orders 

that are to be considered by the Planner for each 

query sent to it. All such series of actions produce the 

same query answer, but usually differ in 

performance. They are usually represented in 

relational algebra as formulas or in tree form. 

Because of the algorithmic nature of the objects 

generated by this module and sent to the Planner, the 

overall planning stage is characterized as operating at 

the procedural level. 

2.4 Structural Space 

This module determines the choice 

of performance that exists for the execution of each 

set of actions ordered by the field of statistics. This 

choice is related to the join methods are available for 

each joint (eg,  nested  loop, scan and hash them 

together),  as  supporting  data structures are built 

on them if / when  duplicates  are eliminated, and the 

characteristics of other  implementation of 

this kind, which are determined by the performance 

of the DBMS. This choice is also linked to   

 evidence any relationship, which is determined 

by the physical schema of each database stored in its 

catalog entry Given a Statistical formula or tree from 

the Statistical Space, this module produces all 

corresponding complete execution plans, which 

specify the implementation of each algebraic operator 

and the use of any indices [6]. 

2.5 Cost Model 

This module specify the mathematical formulas that 

are used to approximate the cost of execution plans. 

For every different join method, for every different 

index type access, and in general for every different 

kind of step that can be found in an execution plan, 

there is a formula that gives its cost. Given the 

complexity of many of these steps, most of these 

formulas are simple approximations of what the 

system actually does and are based on certain 

assumptions regarding issues like buffer 

management, disk-cpu overlap, sequential vs. random 

I/O, etc. The most important input parameters to a 

formula are the size of the buffer pool used by the 

corresponding step, the sizes of relations or indices 

accessed, and possibly various distributions of values 

in these relations. While the first one is determined 

by the DBMS for each query, the other two are 

estimated by the Size- allocation Estimator. 

2.6 Size- Allocation Estimator 

This module specifies how the sizes (and possibly 

frequency distributions of attribute values) of 

database relations and indices as well as (sub) query 

results are estimated. As mentioned above, these 

estimates are needed by the Cost Model. The specific 

estimation approach adopted in this module also 

determines the form of statistics that need to be 

maintained in the catalogs of each database, if any [6] 

 

3. ADVANCED TYPES OF 

OPTIMIZATION 

In this section, we attempt to provide a concise sight 

of advanced types of optimization that researchers 

have proposed over the past few years. The 

descriptions are based on examples only; further 

details may be found in the references provided. 

Furthermore, there are several issues that are not 

discussed at all due to lack of space, although much 
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interesting work has been done on them, e.g., nested 

query optimization, rule-based query optimization, 

query optimizer generators ,object-oriented query 

optimization, optimization with materialized views, 

heterogeneous query optimization, recursive query 

optimization, aggregate query optimization, 

optimization with expensive selection predicates, and 

query optimizer validation. Before presenting 

specific technique consider the following simple 

relation EMP (empid ,salary, job, department, dno) , 

DEPT(dno, budget,) 

3.1 Semantic Query Optimization  

Semantic query optimization is a form of 

optimization mostly related to the Rewriter module. 

The basic idea lies in using integrity constraints 

defined in the database to rewrite a given query into 

semantically equivalent ones [7]. These can then be 

optimized by the Planner as regular queries and the 

most efficient plan among all can be used to answer 

the original query. As a simple example, using a 

hypothetical SQL-like syntax, consider the following 

integrity constraint: 

assert sal-constraint on emp: 

salary>200K where job = “Assistant professor" 

In addition consider the following query: 

select empid, subject 

from emp, dept 

where emp.dno = dept.dno and job = “Assistant 

professor". 

Using the above integrity constraint, the query can be 

rewritten into a semantically equivalent one to 

include a selection on sal: 

select empid, subject 

from emp, dept 

where emp.dno = dept.dno and job = “Assistant 

professor" and salary>200K. 

Having the extra selection could help extremely in 

discovery a fast plan to answer the query if the only 

index in the database is a B+-tree on emp.sal. On the 

other hand, it would certainly be a waste if no such 

index exists. For such reasons, all proposals for 

semantic query optimization present various 

heuristics or rules on which rewritings have the 

potential of being beneficial and should be applied 

and which not. 

3.2 Global Query Optimization 

So far, we have focused our attention to optimizing 

individual queries. Quite often, however, multiple 

queries become available for optimization at the same 

time, e.g., queries with unions, queries from multiple 

concurrent users, queries embedded in a single 

program, or queries in a deductive system. Instead of 

optimizing each query separately, one may be able to 

obtain a global plan that, although possibly 

suboptimal for each individual query, is optimal for 

the execution of all of them as a group. Several 

techniques have been proposed for global query 

optimization [8]. 

As a simple example of the problem of global 

optimization consider the following two queries: 

select empid, subject 

from emp, dept 

where emp.dno = dept.dno and job = “Assistant 

professor ", 

select empid 

from emp, dept 

where emp.dno = dept.dno and budget > 1M 

Depending on the sizes of the emp and dept relations 

and the selectivity’s of the selections, it may well be 

that computing the entire join once and then applying 

separately the two selections to obtain the results of 

the two queries is more efficient than doing the join 

twice, each time taking into account the 

corresponding selection. Developing Planner 

modules that would examine all the available global 

plans and identify the optimal one is the goal of 

global/multiple query optimizers. 

3.4 Parametric Query Optimization 

As mentioned earlier, embedded queries are typically 

optimized once at compile time and are executed 

multiple times at run time. Because of this temporal 

separation between optimization and execution, the 

values of various parameters that are used during 

optimization may be very different during execution. 

This may make the chosen plan invalid (e.g., if 

indices used in the plan are no longer available) or 

simply not optimal (e.g., if the number of available 

buffer pages or operator selectivity’s have changed, 

or if new indices have become available). To address 

this issue, 31several techniques [9,10,11] have been 
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proposed that use various search strategies (e.g., 

randomized algorithms [10] or the strategy of 

Volcano [11]) to optimize queries as much as 

possible at compile time taking into account all 

possible values that interesting parameters may have 

at run time. These techniques use the actual 

parameter values at run time, and simply pick the 

plan that was found optimal for them with little or no 

overhead. Of a drastically different flavor is the 

technique of Rdb/VMS [12], where by dynamically 

monitoring how the probability distribution of plan 

costs changes, plan switching may actually occur 

during query execution. 

 

4. CONCLUSION  
 

To a large extent, the success of a DBMS lies in the quality, 

functionality, and sophistication of its query optimizer, 

since that determines much of the system's performance. In 

this paper, we have given a bird's eye view of query 

optimization. We have presented an abstraction of the 

architecture of a query optimizer and focused on the 

techniques currently used by most commercial systems for 

its various modules. In addition, we have provided a 

glimpse of advanced issues in query optimization, whose 

solutions have not yet found their way into practical 

systems, but could certainly do so in the future. 
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