
International Journal of Technology Research and Management

ISSN (Online): 2348-9006

Vol 1 Issue 2 May 2014

Paper ID: IJTRM/01/02/1019 1

A New Way to Estimate the Size and Effort of Software for

Expert User Programming

*Alka Soniya, **Pawan Ratadiya

*
,
**Bhopal (India)

*soniyaalka16@gmail.com, **pawan_ratadiya1@yahoo.com

Abstract: - The software system development came in to existence around 60 years ago. Right

from the start to until date the software engineering is continuously evolving the new techniques

for developing fast, cheap and top quality software. During this paper, we've given an outline of

existing size and effort estimates for software. Of these estimates are delineated a lot of or less

on their own. Size & effort estimation could be a very talked-about task. Everything revolves

around cost, schedule and quality. One such evolving field of software development is estimation

models for software size and effort. Software size estimation is one among the most necessary

inputs for software cost and effort estimation. Therefore improving the accuracy of software size

estimation ultimately results in improving the accuracy of the software effort and cost estimates.

These estimates are utilized in staffing, scheduling, planning, budgeting etc. however after we

figure these estimates, solely high level project necessities are accessible to us. Using this high

level data to provide correct software size estimates could be an extremely difficult task.

1. INTRODUCTION

Software cost estimating has been an important but

difficult task since the beginning of the computer era

in the 1940s. The size of software applications have

grown in size and importance. Therefore the demand

for the correct software size estimation has conjointly

grown up.

In the early days of software, computer programs

were generally but a thousand machine directions in

size or less than thirty function points, only one

programmer needed to write down, and also the

whole rarely completed in around one month. The

entire development costs were typically less than

$5000. Although cost estimating was troublesome,

the economic consequences of cost-estimating errors

weren't terribly serious.

Today some large software systems exceed twenty

five million source code statements, typically need

technical staffs of a thousand personnel or additional,

and the project cycle take more than 5 calendar years

to complete. Also the event costs for such large

software systems will exceed $500 million.

Therefore, even little errors in cost estimation are

very serious indeed. Also if a major proportion of

enormous software systems run late, then it'll lead to

olympian their budgets. Typically excessive

optimism in software cost estimation may be a major

reason of overruns, project failures etc..

Now days, software is engine of recent business

sector, government sector, and even in military

operations. It easy means a typical Fortune five

hundred corporation or a state government could turn

out hundreds of new applications and modify many

existing applications per annum. As a result, software

cost estimating is currently a thought activity for

every company that builds software.

In addition to the requirement for correct software

cost estimates for day to day business operations.

mailto:*soniyaalka16@gmail.com
mailto:**pawan_ratadiya1@yahoo.com

International Journal of Technology Research and Management

ISSN (Online): 2348-9006

Vol 1 Issue 2 May 2014

Paper ID: IJTRM/01/02/1019 2

Also the software cost estimates have become a

major aspect in litigation. Several authors over the

years observed dozens of lawsuits wherever software

cost estimates were produced by the plaintiffs,

defendants or both.

Figure 1 illustrates the essential principles of recent

commercial software cost-estimating tools.

Figure 1 Software-estimating principle [8]

Every form of estimation and each commercial

software cost-estimating tool wants the sizes of key

deliverables so as to complete an estimate. Size data

can be derived in many fashions, including the

following [8]: Size prediction using an estimating

tool’s built-in sizing algorithms. Sizing by

extrapolation from function purpose totals. Sizing by

analogy with similar projects of known size.

Guessing at the scale using “project manager’s

intuition”. Guessing at the size using “programmer’s

intuition”. Sizing using statistical strategies or monte

carlo simulation. For agile strategies and those comes

using iterative development, sizing of the whole

application could also be deferred till the early

increments are complete. Even for Agile and iterative

projects it's potential to make an approximate

prediction of ultimate size simply by comparing the

nature of the project to similar projects or using size

approximations based on the category, and nature of

the software.

2. LITERATURE SURVEY

At the start of the project, there's a lack of

information. Because of this lack of data most of the

estimation models like- FPA, COCOMO uses a

one_size_fits_all approach to calculate size and

effort. It doesn't provide correct leads to most of the

modern application development. A number of

strategies for estimating size are proposed within the

literature. A good summary of those strategies may

be found in [13, 1, 2, 3] Most of those strategies may

be classified into four major categories: expert

judgment based, analogy based, group consensus

based, and decomposition based.

As is clear from the name, size estimation based on

expert judgment takes advantage of the past

experience of a professional. The conventional

developer is requested to estimate the scale of a

project based on the information accessible

concerning the project. One of the main benefits of

this approach is that consultants can spot exceptional

size drivers. The accuracy of such estimate is

completely dependent on the experience and memory

of the professional. Analogy-based size estimation

strategies [4, 5, 6] use one or a lot of benchmarks for

estimating the scale of a new project. In such

strategies, the characteristics of the new project are

compared with the benchmarks. On basis of that

comparison, the scale of the new project is adjusted

based on the similarities and differences between the

new project and also the benchmarks. Pair-wise

comparison could be a special case of analogy-based

sizing that uses one reference point. This sort of

estimation will only be employed when appropriate

benchmarks are available. The main advantage of this

approach is that it uses relative sizing which prevents

most of the issues associated with absolute sizing like

personal bias and incomplete recall.

Group consensus techniques like wideband Delphi

[13] and planning Poker use a group of people

instead of individuals to derive estimates of size. In

this technique, estimation activities are coordinated

by a moderator who describes the scenario then

estimates, and at last compiles the results. At the end

of the first round, divergences are discussed and

individuals share rationales for their estimation

values. More rounds of estimation could also be

necessary to succeed in a consensus. The most

advantage of those techniques is that they improve

understanding of the matter through group

International Journal of Technology Research and Management

ISSN (Online): 2348-9006

Vol 1 Issue 2 May 2014

Paper ID: IJTRM/01/02/1019 3

discussion. This iteration and group coordination

requires more time and resources than techniques

counting on one person.

Decomposition techniques for estimating size use a

more rigorous approach. Here two complementary

decomposition techniques are available: top-down

and bottom-up. Top-down estimation focuses on the

product as an entire. Estimates of the size are derived

from the worldwide product characteristics and are

then allotted proportionately to individual

components of the product. The bottom-up estimation

focuses on the individual components. This size is

estimated for every individual part. The size of the

product [7] is then derived by summing the size of

the individual components. Since these 2 techniques

are orthogonal to every other therefore the benefits of

one are the disadvantages of the other. The top-down

approach incorporates a system level focus however

lacks a detailed basis. The bottom-up approach

incorporates an additional detailed basis however

tends to ignore overall product characteristics.

3. FUNCTION POINT ANALYSIS

Function point Analysis [8] is an objective and

structured technique to measure software size by

quantifying its practicality provided to the user. It is

based on the necessities and logical design. FPA

technique breaks the system into smaller elements so

they are often higher understood and analyzed. The

FP counts are often applied to development projects,

the enhancement projects, and on the prevailing

applications as well. The FPA has 5 major segments

through that it captures the functionality of the

appliance. These are: External Inputs (EIs), External

Outputs (EOs), External Inquiries (EQs), Internal

Logical Files (ILFs) and External Interface Files

(EIFs). initial three are treated as Transactional

Function types and last two are data knowledge

function Types. Function point Analysis consists of

performing the subsequent steps:

 find the type of function point count.

 find the application boundary.

 determine and rate transactional function types to

calculate their contribution to the Unadjusted

function point count (UFP).

 determine and rate the data function types to

calculate their contribution to the UFP.

 Calculate the value Adjustment factor (VAF) by

using General System Characteristics (GSCs)

 at end calculate the adjusted function point count

4. END USER PROGRAMMING [9]

End-User Programming system aims to give some

programmable system functionality to those who are

not skilled programmers. The most successful

computer program of all times is the spreadsheet

applications. The explanation behind its success is

that end users will program it without going into the

background details of logic and programming.

However, end user programming is rare in alternative

applications and wherever it exists sometimes

requires going conventional programming, for

example AutoCAD provides LISP for customization,

and Microsoft applications use Visual Basic. The

more convenient mechanism for users is to customize

existing applications and build new ones as and when

required.

End-user programming is outlined as “Creating an

information structure that represents a collection of

instructions either by explicit coding or by interaction

with a tool. The instructions are executed by a

machine to supply the desired outputs or behavior”

[9].

End-User Programming are going to be driven by

increasing computer literacy and competitive

pressures for speedy and user driven information

processing solutions. Such trends will force the

software marketplace toward having users develop

most data processing applications themselves via

application generators. The most popular example

application generators are spreadsheets, query

systems, and inventory systems [11].

International Journal of Technology Research and Management

ISSN (Online): 2348-9006

Vol 1 Issue 2 May 2014

Paper ID: IJTRM/01/02/1019 4

End-user programmers who incorporates a good deal

concerning their applications domain and

comparatively very little about computer science in

distinction to the infrastructure developers can

typically know a good deal concerning computer

science and comparatively very little about

applications [12].

Effort estimation for software projects has

established to be an elusive and expensive problem in

software engineering. The stakeholders expect

precise estimates within the early stages of a project.

However dependably producing those numbers is

extremely difficult and may well be technically

impossible. Author boehm et al. report that

estimating a project in its initial stages yields

estimates which will be off by the maximum amount

as a factor of four. Even at the purpose when careful

specifications are produced, the professional

estimates are expected to be wrong by 500th. [10]

The expert user programming also affects the size of

software. By as well as it within the list of general

system characteristics, we've got created a provision

for taking user facilities into consideration, at the

time of estimating the size of a project. it's clear that

our proposed FPA provides additional accurate size

estimates. It will narrow the gap between size

calculable and actual size. Which can lead to

additional accurate effort and cost estimates. that

ultimately results in increased productivity and

proper staffing , planning, scheduling.

5. CONCLUSION

In this paper, we have presented a survey of some

popular software size estimation techniques. The

advantages and disadvantages of each technique are

mentioned. It’ll facilitate in coming up with a

additional accurate software size estimation

technique.

References

[1]. Verner et al, A Model for Software Sizing",

Journal of Systems and Software, IEEE Software,

pp. 173-177, July 1987.

[2]. Albrecht et al, Software Function Source Lines of

Code and Development Effort Rediction: A

Software Science Validation, IEEE Transactions

on Software Engineering, Vol. SE-9, No. 6, pp.

639-647, Nov. 1983.

[3]. N. E. Fenton and S. L. Pfleeger, 1997. Software

Metrics: A Rigorous and Practical Approach, 2nd

Edition Revised ed. Boston: PWS Publishing.

[4]. L. M. Laird, and M. C. Brennan, 2006. Software

Measurement and Estimation: A Practical

Approach, Wiley-IEEE Computer Society Pr,

ISBN: 0-471-67622-5.

[5]. Forselius, P., 2004. Moving from Function Point

Counting to Better Project Management and

Control, IWSM/MetriKon Presentation.

[6]. C. R. Symons, Software Sizing and Estimating -

MkII FPA Function Point Analysis , John Wiley

and Sons, Chichester, U.K., 1991.

[7]. A. Abran, M. Maya, J. M. Desharnais, and D. St-

Pierre, “Adapting function points to real-time

software,” American Programmer, Vol. 10, 1997,

pp. 32-43.

[8]. C. Jones, Applied Software Measurement:

Assuring Productivity and Quality, McGraw-

Hill, New York, 2008.

[9]. Contributions, Costs and Prospects for End-User

Development, Alistair Sutcliffe, Darren Lee &

Nik Mehandjiev

[10]. Boehm, B., Clark, B., Horowitz, E., Westland,

C., Madachy, R., and Selby, R. Cost models for

future software life cycle processes: COCOMO

2.0. Annals of Software Engineering, Special

Volume on Software Process and Product

Measurement (1995) .

[11]. Boehm B.W. (1981), “Software Engineering

Economics”, Prentice-Hall, Englewood Cliffs,

NJ, 1981.

