
International Journal of Technology Research and Management
ISSN (Online): 2348-9006

 Vol 3 Issue 7 July 2016

Paper ID: 2016/IJTRM/7/2016/6821 1

An Approach to Find Software Reusability Based on Object-

Oriented Metrics

Mr. Pavan Devade
1
, Prof. Pritesh Jain

2

Patel College of Science and Technology, PG scholar, CSE Department, RGPV University, Indore, Madhya

Pradesh, India
1

Patel College of Science and Technology, Reader, CSE Department, RGPV University, Indore, Madhya

Pradesh, India
2

pawan1devade@gmail.com
1
, pritesh.arihant@gmail.com

2

Abstract: The Software reusability has considerable effect on software quality and productivity, software

quality increases with reuse of software components and source code directly relates to cost and quality.

Software Reusability is the likelihood of a segment of source code that can be used again to add new

functionalities with slight or no modification in software.. Software programming is a complex task, mainly

due to the complexity involved in the process. Reusability is the ability to implement or combine

independent software components in large units. The metrics that evaluate object oriented metrics are:

classes, methods, inheritance. Very few metrics are presented for object oriented source code. In this

Dissertation, a measurement has been done for measuring the Reusability of source code using Object

Oriented Metrics. The aim of this proposed work is to identify and analyze the object oriented programming

to increase reusability and improve software quality through object oriented metrics. Object oriented

metrics have been applied on programs of inheritance the metrics values are evaluated. This thesis presents

a measurement to measure Reusability in object oriented code using Object Oriented Metrics.

Keywords: Reusability, coupling matrices, DIT, WMC, LOC.

1. INTRODUCTION

To extend the development of any application's productivity

its matainabilty and Reusabilty is one of the best options.

Firstly a good tested software component with reusable

features must be found.

A Programmer's developed application can be useful as a

component to others, thereby demonstrating that code

specifics to application requirement can be reused to develop

projects associated with similar necessities.

Measurement may help us to build reusable components

along with reusable components among the wealth of

existing programs. Existing programs contain the knowledge

and experience obtained from working in the specific

application domain and meeting the organization‟s software

needs. If we could pull out this information effectively, we

could retrieve a valuable resource upon which to build future

applications. Reusability saves time for developing the

software which ultimately reduces the cost of application

development. This also improves the software performance.

And objective of the any system organization is giving the

product with good quality and reduced the low cost [1].

Software reusability has considerable effect on software

quality, software quality increases with reuse of software

components and source code directly relates to cost and

quality, but software quality cannot be improved unless it is

measured. OO measurement is being used to evaluate and

predict the quality of the software [2].

mailto:pawan1devade@gmail.com
mailto:pritesh.arihant@gmail.com

International Journal of Technology Research and Management
ISSN (Online): 2348-9006

 Vol 3 Issue 7 July 2016

Paper ID: 2016/IJTRM/7/2016/6821 2

Reusability software developed for calculating the

Reusability of the object oriented programs. This developed

software will be calculate reusability of existing software

component artifacts following terms of portability,

understandability, maintainability, adaptability and

characteristics of quality that would be utilize. And also this

reusability software will be help to decision take support

almost which is particular reusable components should be

reused.

Coupling: The Coupling is a act of adding two things with

together. In software development, coupling points to the

degree to which software components are dependent upon.

For instance, in a tightly-coupled architecture, its associated

components and each all components must be present in

order for code to be executed or compiled [9].

In a loosely-coupled architecture, components can remain

autonomous and that allows middleware software for

managing the communication between them. Coupling:

Degree of dependence among components High coupling

makes modifying parts of the system difficult, e.g., the

modification of any component affects all the components to

which the component is connected [9].

Cohesion: Cohesion is refers to the degree to which the

elements of a module belong together. Thus, Cohesion is the

measure of how each piece strongly-related of functionality

which is expressed by the source code of a software module.

The Module with cohesion refers on the lightly bound the

internal elements of the module are to each another. The

coupling between the modules is lower when the cohesion is

greater. The internal Cohesion of a module is calculated in

terms of the strength of the hiding of the elements inside the

modules itself [9].

2. SOFTWARE METRICS

The Software Metrics is a number of components available on

the market increases, it is becoming more important to devise

software metrics to quantify the various characteristics of

components and their usage. Software metrics are intended to

measure the software quality and performance characteristics

quantitatively, encountered during the planning and execution

of software development. These can serve as measures of

software products for the purpose of comparison, cost

estimation, fault prediction and forecasting. Metrics can also

be used in guiding decisions throughout the life cycle,

determining whether software quality improvement initiatives

are financially. A lot of research has been conducted on

software metrics and their applications. Most of the metrics

proposed in literature are based on the source code of the

application. However, these metrics cannot be applied on

components and component-based systems as the source code

of the components is not available to application developers.

Therefore, a different set of metrics is required to measure

various aspects for component-based systems and their quality

issues [2].

Object Oriented Metrics:

Weighted Method per Class (WMC)

Number of Children (NOC)

Depth of Inheritance Tree (DIT)

Line of Code (LOC)

Response for a Class (RFC)

Coupling Between Object (CBO)

Comment Percentage (CP)

Lack of Cohesion in Methods (LCOM)

Table: 2.1 Object Oriented Metrics

WMC Weighted Method per Class

NOC Number of Children

DIT Depth of Inheritance Tree

LOC Lines of Code

RFC Response for a Class

LCOM Lack of Cohesion in Methods

CBO Coupling Between Object

CP Comment Percentage

Metric 1: Weighted Methods per Class (WMC)

International Journal of Technology Research and Management
ISSN (Online): 2348-9006

 Vol 3 Issue 7 July 2016

Paper ID: 2016/IJTRM/7/2016/6821 3

WMC measures the complexity of any individual class.

There are two main approaches are used and to the calculate

the WMC metric. The first uses the sum of the complexity of

each method contained in the class. In a second approach

assigns a complexity of 1 for each method in the class and

then sums the result. This is equivalent to using the number of

methods per class as a measure for WMC.The number of

methods and complexity of methods involved is a direct

predictor of how much time and effort is required to develop

and maintain the class [10].

Weighted Method per Class (WMC) metrics is applied

towards calculating the structure complexity of the programs.

Method complexity is measured by using Cyclomatic

Complexity and WMC is sum of complexity of the all

methods which is applied in class. Let consider class is getting

the methods (m1, m2, and m3…mn) and complexity of the

methods are (c1, c2, and c3…cn) then [3].

WMC = c1+c2+c3+…. +cn;

Cyclomatic Complexity causes base of the graph theory and

is computed in one of the 3 directions. Number of regions in

flow graph.

Cyclomatic Complexity find out in flow graph as follow

C (G) = E – N +2;

Where N is the no of the nodes in a graph and E is the no of

the edge in the graph. Cyclomatic Complexity defined in flow

graph as follow [4]

C (G) = P+1;

Where „P‟ is a number of predicate nodes in a graph.

Statement where we are taking some decision are called

predicate node.

Metric 2: Depth of Inheritance Tree (DIT)

Depth of inheritance (DIT) metric is applied for measuring the

inheritance complexity for the programs, when programmers

usages the inheritance in their program then this Metric can be

utilized [4].

Depth of inheritance (DIT) is the Maximum depth from the

root node of tree to special node. Here class is represented as

a node. Deeper node in the tree accepts more number of

methods because they inherit and the more classes in the tree

and it make the class more complex.

Metric 3: Number of children (NOC)

The Number of children (NOC) is applied when there are

many numbers of the Sub- Classes of the Particular class in

hierarchy of the class exist. If children of a class are more, it

requires more test because super class may be misused [3].

Public Interface Size:

If the number of the public method is delivered in the class

than Public interface size is determined, which describes how

much other class is using that class method.

Metric 4: Coupling between object classes (CBO)

Coupling between object classes (CBO) for a class is a count

of the no. of other classes to which it is coupled. It describe to

the notion that an object is coupled to other object if one

among them acts on the other, i.e., methods of one use

methods or instance variables of another. As described earlier,

since objects of the same class have the same properties, two

classes are coupled while methods declared in one class use

methods or instance variables defined by the other class

[1][3].

Metric 5: Response for a Class (RFC)

The response set of a class is a set of methods that may

probably be executed in response to a message received by the

object of that class [7]. The cardinality of the set is a measure

of the attributes of objects within the class. Since it

specifically includes methods which are called from outside

the class, which is also a measure of the effective

communication between the class and other classes.

International Journal of Technology Research and Management
ISSN (Online): 2348-9006

 Vol 3 Issue 7 July 2016

Paper ID: 2016/IJTRM/7/2016/6821 4

RFC = | RS | where RS is the response set for the class.

Metric 6: Lack of Cohesion in Methods (LCOM)

The larger the number of same type of methods, the more

cohesive the class, which is consistent with traditional notions

of cohesion that measure the interrelatedness among portions

of a program. If none of the methods of a class display any

instance behavior, i.e. they do not use any instance variables,

they have no similarity and the LCOM value for the class will

be zero.

The LCOM value gives a measure of the relative disparate

nature of methods in the class. A smaller number of disjoint

pairs (elements of set P) implies similarity of methods is

greater. LCOM is tied to the instance variables and methods

of a class, and so it is a measure of the attributes of an object

class.

Metric 7: Comment Percentage (CP)

Comment Percentage (CP): Comment Percentage(CP) is

computed by number of comment line separated along Line of

Code. High evaluate of the Comment Percentage (CP)

increases the maintainability and understandability [3].

 CP = Comment Line / LOC;

Metric 8: Line of Code (LOC)

Lines of Code (LOC): Lines of Code (LOC) metrics applied

for measuring the size of the program by considering the no of

lines in program. Lines of Code (LOC) counts to all lines

like as source line and the number of statements, the number

of blank lines and number of comment lines.

3. METHODOLOGY

We collect the all metrics determined for extract reusability of

object oriented software that are suggested in the literature.

And effort to develop a software that would be implements

them. To calculate reusability automatically of object oriented

programs. Using the object oriented programming for

developing the system. This Software is allowing the

flexibility. Because Software concentrate on the quality

factors like understandability maintainability, portability,

interface size, adaptability, reliability which affects the

reusability attributes. We can easily add it and utilize the

functionality of the module [1].

Reusability is depends on followings like adaptability,

portability, understandability maintainability and reliability.

We are dealing with the C# .NET programs that way

portability is not issue for us. Complexity is of two types i.e.

Inheritance complexity and structure complexity [2], and we

are treating with static code, so we are not consider the

reliability an influence which is the reusability, since

reliability is measured in terms of the average time and error

which is calculated, on the execution of the program.

Understandability depends on the structure complexity,

documentation level of the programs and size [3].

Figure 3.1 shows the factors in which reusability are depend.

Adaptability, portability, maintainability reliability and

understandability these are the main factors use to calculate

the reusability of source code. This are the factors in which

the reusability of software is depend [4].

Figure 3.1: shows the Factor and Metrics in which Reusability

depends

3.1. Understandability

Understandability is that stage in which the sense of the

software system or module should be allowed to the developer

or user.

International Journal of Technology Research and Management
ISSN (Online): 2348-9006

 Vol 3 Issue 7 July 2016

Paper ID: 2016/IJTRM/7/2016/6821 5

Understandability depends on the following elements, which

are Documentation level, size and complexity.

understandability of the module is high when modules are

well documented i.e. new developer understand module code

easily because module having more comment lines, since

what cause function do describe in the starting of the purpose.

Understandability is also depends on the size of the module.

When size of the module is high and then itself difficult to

understand [4][8].

3.2. Maintainability

The degree to which the module or system of the software

can be modified easily in order to adding quality attributes, fix

bugs, or for adjustment of the operating environment change,

increase efficiency of the system [8].

Maintainability depends on the following the factor like

modularity, RFC, size, complexity. If module comprises

more complex data structure in his program and more

decision statement, we can say module is more complex. If

the Complexity of the module is higher than module is

difficult to maintain. Modularity is measure by using the

coupling metrics, cohesion metrics and Maintainability highly

depends on the modularity.

3.3. Adaptability

Adaptability determines as how easily software satisfies

requirement or and user requires of the new environments

from being system and system constraints. Now suddenly

business environment or business require is changed, thus

handling this situation adaptability is one of the important

component or weapon. Business market situate is change

frequently so our software system should be adaptable to

satisfy this requirement. It doesn‟t intend whatever software.

We build up from OOP is always adaptable [8].

4. PROPOSED METHODOLOGY

One of the difficult task it to identify the reusable module. We

have already explain component on which reusability depend.

Most important element on which reusability depends are

complexity and coupling. When the coupling and complexity

are high of module and reusability of that module is low.

Formula for calculating the reusability of objected oriented

program is described below [1].

Reusability of a class = a*(DIT) + b*(NOC) – c*(CBO)

Where a, b, c are empirical constants [1]. DIT is depth of

inheritance tree, NOC is number of child and CBO is coupling

between object. DIT and NOC is positive impact on

reusability and CBO has negative impact on reusability.

5. APPROACH FOR IDENTIFICATION OF

REUSABLE MODULE

In few of the organizations have applied systematic reuse

programs, which have resulted in-house libraries of reusable

components. Other different organizations have supported

their reuse with own techniques and software to recover

components [4].

Step follow to identify the reusability

 Extract the source code.

 Calculating the Metrics.

 Display.

Extract the source code: In this stage we analyzed the source

code and pull out valuable information and store it in

memory, which is needed for calculating the all metrics.

Calculating the Metrics: In this phase we calculate, object

oriented metrics. And result of the all metrics is store in

memory. All the metrics are concern by object oriented

system.

Display: We give them some weighted to each metrics and

finally we determine the reusability of the sources code,

Figure 5.1 show the Step follow for identified the reusable

module [3][4].

International Journal of Technology Research and Management
ISSN (Online): 2348-9006

 Vol 3 Issue 7 July 2016

Paper ID: 2016/IJTRM/7/2016/6821 6

Figure 5.1: show Step follow for identified the reusable module

Why Reuse ?

It has been proven to offer many rewards. When we reuse

code, components and other artifacts, our goals are to [5]:

 Reduce the time to market.

 Reduction of cost of developing product.

 It improves the output of the development terms.

 It improves the predictability of the development.

 Process Increase the reliability and quality of the

product.

 When reuse is mentioned, we often think only of code

reuse.

Software reuse is the process of implementing or updating

software systems using existing software asset. A good

software reuse process facilitates the increase of productivity,

quality, and reliability, and the process of costs and

implementation time. An initial investment is require to start a

software reuse process, but that investment pays for itself in a

few reuses [6].

6. DESIGN & IMPLEMENTATION

DETAILS

6.1. GUI of the system

Figure 6.1 show the main Graphical User Interface of the

system. This is the index form of the system:

Figure 6.1: GUI of the System

Figure 6.1 show the main GUI of the system. This is the GUI

form developed in C# programming language. In this form

some GUI control are used. In this GUI form browse file,

apply metrics; calculate reusability etc is button controls. And

one Rich Textbox is used for show the selected source code,

some text boxes are used for display the value and one list box

are used for the show name of all classes. GUI programming

is user friendly language.

7. RESULTS

7.1. Systems for Test

Now select the C# source code file for the calculate metrics.

Following systems were taken for test:

International Journal of Technology Research and Management
ISSN (Online): 2348-9006

 Vol 3 Issue 7 July 2016

Paper ID: 2016/IJTRM/7/2016/6821 7

Figure 7.1.1: Browse the Source Code as Input

Figure 7.1.1 show the select the source code as input for

calculating the reusability.

7.2. Calculating Reusability of Bank Class

For calculating reusability of class we browse the source code

of Bank class as input. And then extract the data from source

code that are taken in input and apply the software reusability

metrics on source code and show the reusability of classes.

Figure 7.2.1: Browse the Bank Source Code as Input

Now after loading source code file we can calculate total

number of classes, in this C# programming source code:

Figure 7.2.1.1: Browse the Bank Source Code as Input

Now after loading source code file we can calculate total

number of classes, in this C# programming source code:

Figure 7.2.1.3: calculating the metrics for Bank

Now we can perform final comparison and the result will be

appearing. The maximum reusability in source code is 5.

International Journal of Technology Research and Management
ISSN (Online): 2348-9006

 Vol 3 Issue 7 July 2016

Paper ID: 2016/IJTRM/7/2016/6821 8

Figure 7.2.1.4 Reusability value for Bank

Figure 7.2.1.4: show the reusability of each classes of source

code.

8. CONCLUSION

The purpose of this thesis is to find the way to evaluate

reusability of object oriented programs. Reusability is one of

the quality attribute which is of key feature in object oriented

software development. As this method leads to increase in

developer productivity, minimising development cost and

also time to market. The work presented in this thesis can be

effectively used to evaluate the reusability of any give object

oriented software module.

Proposed approach estimates the reusability on the basis of

different metrics based on inheritance, number of children

and coupling. This work can be used in any organization or

industry to found the most reusable module from number of

modules to improve their productivity and quality.

When the class cohesion is increased and coupling between

object is reduced, the reusability of source code will also get

increased. When the coupling measures are reduced and

cohesion measures are increased, the classes can function

more independently. In future work we can apply various

other Object Oriented metrics (like coupling factor, lack of

cohesion etc) to identify or to compare better reusability and

quality results for given source code. This software or system

only checks the reusability in C# source code. In future we

are developed a software those are check the reusability in all

Object Oriented Code. As in our Interface, the code shown in

text box have to be compiled by language compiler before

using, we didn‟t provide any compile or error checking

services in our implementation.

REFERENCES

[1] “An Approach to Measure Software Reusability of OO

Design”, Selim Kebir, Abdelhak-Djamel Seriai, Allaoua

Chaoui, Joint Working Conference on Software Architecture &

6th European Conference on Software Architecture, 978-0-

7695-4827-2/12 $26.00 © 2012 IEEE, DOI 10.1109/WICSA-

ECSA.212.26, 2012

[2] “A Novel Coupling Measure difference between Inheritance

and Interface to find better OOP Paradigm using C#”. WICT,

2011 978-1-4673-0125-1c 2011 IEEE, Narendra, Ravindra

Gupta, 2011.

[3] “Significance of Software Metrics to Quantify Design and

Code Quality”, S.Arun Kumar T.Arun Kumar P.Swarnalatha,

International Journal of Computer Applications (0975 – 8887),

Volume 11– No.9, December 2010.

[4] “An Approach For Calculation Of Reusability Metrics Of

Object Oriented Program”, Avinash Dhole and Nehil Rao

Nirmal, International Journal of Engineering Research &

Technology (IJERT), ISSN: 2278-0181, Vol. 2 Issue 6, June –

2013.

[5] “A Method for Assessing the Reusability of Object-oriented

Code Using a Validated Set of Automated Measurements”,

Dandashi F ACM 2002 pp 997-1003, 2002.

[6] “An Empirical Study on Object- Oriented Metrics”, Tang, M.,

Kao, M., and Chen, M., EEE Transactions on Software

Engineering, 0-7695-0403-5, 1999.

[7] “Software Quality Metrics for Object Oriented System

Environment” by SATC (Software Analysis Technology

Center) SATC-TR-95-1001, June 1995.

[8] “An Approach to Analysis Software Reusability”, International

Journal of Advanced Research in Computer Science, Ashish

Agrawal, Volume 3, No. 3, May-June 2012,

[9] http://www.indiawebdevelopers.com/articles/reusability.asp.

[10] http://www.boddunan.com.articles/education/19-

engineering/156-cohesion-and tstypes.html.

