
International Journal of Technology Research and Management
ISSN (Online): 2348-9006

 Vol 7 Issue 4 April 2020

Paper ID: 2020/IJTRM/4/2020/35438 1

A Tree Based Register Allocation Algorithm Using Graph Coloring

Approach

Anju Dave
1
, Dr. Deepika Pathak

2

Asst. Prof., M.K.H.S. Gujarati Girls College, Maharani Road, Indore(M.P.) 452001, India
1

 Vice Chancellor Dr. A.P.J. Abdul Kalam University, Indore (M.P.) – 452016, India
2

anjusumitbhatt@gmail.com
1
, deepikapathak23@gmail.com

2

Abstract: Code generation is an important part of compiler design. This phase takes optimized Intermediate

Representations (IR) code from IR optimizer. The main goal of this phase is to select appropriate machine

instruction from all IR instructions and allocate the finite machine resources like register allocation, cache

memory etc. In this paper a tree based register allocation technique is proposed. This proposed algorithm is

inspired by graph coloring algorithm. Proposed algorithm gives good performance in high amount

variables program.

Keywords: Register allocation, Graph coloring, Compiler, Algorithm, Code Optimization, Time Complexity,

Register Interference Gragp(RIG).

1. INTRODUCTION

Memory hierarchy is used in computer system to manage

the memory. Every part of computer plays their roll to

execute a program in optimized way. Programs are written by

programmer to run in main memory (RAM) and stored in

disk (Secondary storage). Programmers are responsible for

disk and main memory data movement. Hardware is

responsible for data movement between main memory and

cache memory. Lastly compilers are responsible for data

movement between main memory and registers. Registers are

the very fast and limited memory. They are integrated with

processor and used to store the values of program variables

while execution of program. It is costly memory so that it is

limited. It is not possible every time to allocate all variables

to the registers. Compiler uses register allocation algorithms

to allocate registers to the program variables [1] [2].

1.1 Register Allocation:

Most of the high level programming language is machine

independent. Programmer need not to vary about hardware

during programming. High level programming languages do

not pay attention on memory hierarchy and memory

management. There are certain regions behind doing this,

like versatility of hardware configuration, speed of memory,

size of memory, generalization of programs etc. All these

details are taken by compiler which translates the high level

code into machine level codes. Compilers are design and

implemented in such a way that it take cares of all hardware

and memory available. On the same, CPU registers allocation

is also taken care by compiler. Most of the compilers are

designed and implemented in 6 phases, i.e. Lexical analyzer,

Syntax analyzer, Semantic analyzer, Intermediate code

generation, Code optimizer, and Target code generator.

These phases orientation is shown in figure 1.

mailto:anjusumitbhatt@gmail.com
mailto:deepikapathak23@gmail.com

International Journal of Technology Research and Management
ISSN (Online): 2348-9006

 Vol 7 Issue 4 April 2020

Paper ID: 2020/IJTRM/4/2020/35438 2

Figure 1: Compiler Structure and Phases

Broadly these phases are divided into three categories

front end, optimizer and backend [3]. Front end is machine

independent. It translates high level language code into

intermediate code. Compile time error checking is done by

front end. Front end is always language dependent. First four

phases of compiler (Lexical analyzer, Syntax analyzer,

Semantic analyzer and Intermediate code generation) comes

in this category. Code optimizer phase of compiler is the

second section (optimizer). It performs global optimization in

different phases. Optimizer transfers the intermediate code to

increase the performance of code. Optimizer is independent

from language as well as machine. It includes removal of

common sub-expression, identified and elimination of

unreachable code, loop invariant code motion and strength

reduction etc. Target code generator phase of compiler is

known as backend section of compiler. Backend translate

globally optimized code into machine dependent code. Back

end perform many operations including instruction selection,

scheduling of instruction and register allocation. Back end in

totally language independent phase.

Register allocation algorithm works in target code

generator phase on optimized code received from code

optimizer. Code is optimized at program level by code

optimizer phase but register allocation of target code

generator phase optimizes the code at hardware level. This

phase do this by assigning and utilizing proper hardware and

memory to the program instructions. Register allocation must

be in such a way that maximum variable is assigned to

minimum available registers, so that program execution and

memory operations get more faster.

Further, this article is structured as follows. In Section 2,

some existing graph coloring approaches used for register

allocation and other applications are reviewed. In Section 3,

some basic terminology used in register allocation using

graph coloring is explored. In Section 4, a small description

of tree based graph coloring approach is included. In Section

5, all the major important steps and flow of proposed register

allocation algorithm is explained. In Section 6, entire

approach is explained through an example. Section 7

summarized this research work.

2. RELATED WORK

G.J. Chaitin et al. [5] (1981) first time introduced register

allocation via graph coloring. They implemented and tested

register allocation phase on PL/I compiler for the IBM

system/370. 17 registers are maped to unlimited number of

symbolic registers (variables) of intermediate code. They

have successfully implemented this important optimization

phase using graph coloring approach. There was problem in

register allocation when number of colors equal or greater to

the number of machine registers. This problem is solved

using introducing spill and reloads register concepts in

algorithm [4].

Keith D. Cooper and Anshuman Dasgupta [7] (2006)

explore a global register allocation graph coloring for

runtime compilation. Their technique is better than linear-

scan [2] and Chaitin-Briggs [4][5] allocators for most of the

runtime environment.

David Koes and Seth Copen Goldstein [8] (2006)

proposed an integer linear program (ILP) based graph

coloring algorithm to solve register allocation problem. In

this algorithm author improved the traditional graph coloring

algorithm by improving objective function to reduce spill

cost. Cascading was modeled using ILP. Selection of

coloring was also in a particular order to improve the

selection phase and register assignment was also in a

particular order to improve the register allocation.

Sevin Shamizi and Shahgiar Latfi [9] in (2011) proposed

register allocation optimization technique based on graph

coloring evolutionary algorithm. In this algorithm selection

of spilling variable and graph coloring take place

simultaneously.

Lexical analyzer

Syntax analyzer

Semantic analyzer

Intermediate code generation

Code optimizer

Target code generator

Source

Code

Executable

Code

International Journal of Technology Research and Management
ISSN (Online): 2348-9006

 Vol 7 Issue 4 April 2020

Paper ID: 2020/IJTRM/4/2020/35438 3

By the time there was many other graph coloring

algorithms (Sequential Greedy Algorithm [16], First Fit [17],

Largest-Degree-First-Ordering [18], Incidence-Degree-

Ordering [19], Smallest-Degree-Last–Ordering [20] and

Saturation-Degree-Ordering [21]. There are many parallel

graph coloring approaches such as: Parallel Maximal

Independent set [22], Jones and Plassmann [23], the Largest-

Degree-First and Smallest-Degree-Last [16], Graph

Partitioning Approach, Block Partitioning Approach [24] etc)

were proposed and used to solve the register allocation as

well as other optimization problems like timetabling and

scheduling, radio frequency assignment [14], and satellite

range scheduling [15].

3. REGISTER ALLOCATION USING

GRAPH COLORING

This section included some important terminologies

related to register allocation algorithm using graph coloring

(GC) and general procedure of register allocation using GC is

also included in this section.

3.1 Basic Terminologies:

i. Temporary variables: - These variables are used in

programs to perform any mathematical and logical

operation in programs. Generally these variables get

space in main memory. But to speed up the variable

access, CPU registers are allocated to those

variables.

ii. Variable Live Range: - Every variable is considered

in live range at point in program where variable is

lives.

iii. Variable Live Interval: - Compiler convert the

source code into intermediate representation code

(IR Code). Live range for a variable is smallest sub-

range of the IR Code.

iv. Register Interference Graph (RIG):- It is a

undirected graph in which all vertices represents the

variables and connecting edges represents live status

of variables at the same program point.

4. TREE BASED GRAPH COLORING

ALGORITHM (GCA) [11]

This section exploring graph coloring algorithm used to

implement proposed register allocation algorithm.

A tree data structure based GCA is used to implement

register allocation algorithm. The entire process of graph

coloring is divided into three basic steps as shown in figure 2.

Figure 2: Basic Steps of Tree Based GCA

Solving the graph coloring problem is NP-hard [10] and it

is hard to determine time complexity of algorithm. But by the

experimental results and hypothesis the worst case

complexity of selected algorithm is O(2n-1) [11]. Time

complexity to find maximal independent set is O (2
log n

) [12].

Selected algorithm gives high performance for high degree

graphs i.e. this algorithm is more suitable for the programs

where number of variables are high and live intervals of

variables in program at same time are also high.

5. PROPOSED REGISTER ALLOCATION

ALGORITHM

This section completely devoted to proposed register

allocation algorithm, its approach, implementation and

performance.

Proposed register allocation technique is based on graph

coloring approach. Integrated graph coloring algorithm is tree

based graph coloring. Broadly entire process is divided into

six steps.

Step 1: Identification of variables:

Register allocation is all about allocating registers to

variable so according to the programming language, firstly

Start

End

Create Complement Edge

Table

Finding maximal

independent set

Assignment the color to maximal

independent Set

International Journal of Technology Research and Management
ISSN (Online): 2348-9006

 Vol 7 Issue 4 April 2020

Paper ID: 2020/IJTRM/4/2020/35438 4

identification of all variables need to complete. In this step all

the declared variables are identified and numbered.

Step 2: Evaluation of live interval of variables:

Live interval of variable is life time of variable, for that

time duration variable is required memory to store and

process the data. Using liveliness analysis [13], live interval

of each identified variables need to calculate.

Step 3: Register Interference Graph generation:

An undirected graph has to be generated in which each

vertex represents a single variable of program and all vertices

are interconnected, if variables corresponding to the vertices

has the common live interval.

Step 4: Applying tree based graph coloring algorithm on

interference graph:

Input interference graph to the graph coloring algorithm.

The internal process of graph coloring is divided in three

steps as shown in figure 2.

Step 5: Sort independent set:

After applying graph coloring algorithm, we will get

independent sets. Each set of variables can be assign to a

single register. All the independent sets need to be arranged

in sorted order (deciding order) according sum of variables

live interval time in that set.

Step 6: Register assignment:

Now sorted list of independent sets can be assign to

available registers. For example if processer has 4 register

than first four independent sets are assigned to register (each

set to single register).

Entire process flow is shown in figure 3.

Figure 3: Process Follow Register Allocation Algorithm

Start

End

Variable Identification

Calculation Live interval of

Variables

Generate Register Interference

Graph (G)

Create adjacency list E(G)

Create Complement Edge List

E’(E)

Calculate maximal

independent set

Assign same color to all

vertices in single independent

set

Sort independent sets

according to their live interval

in descending order

Allocate registers to all

variables according to color

assigned in sorted order

International Journal of Technology Research and Management
ISSN (Online): 2348-9006

 Vol 7 Issue 4 April 2020

Paper ID: 2020/IJTRM/4/2020/35438 5

6. ILLUSTRATION BY EXAMPLE

Let us explore the proposed approach using an example.

Consider a code segment as shown in figure 4. This code

segment consist seven different variables named a, b, c, d, e,

f and g. This example shows how we can assign registers to

those variables in such a way that maximum variables get

registers and increase the performance program execution

process.

Figure 4: Sample Code Segment

Figure 4: Energy Consumption Comparisons

6.1 Liveliness Analysis:

Figure 5 explored the variables (a, b, c, d, e, f and g)

liveliness. Pare of braces before and after instructions

containing variables shows liveliness status of variables. The

green vertical bars in figure 6 shows the live interval of each

variable in code segments.

Figure 5: Liveliness Analysis

Figure 6: Live Interval of Variables

International Journal of Technology Research and Management
ISSN (Online): 2348-9006

 Vol 7 Issue 4 April 2020

Paper ID: 2020/IJTRM/4/2020/35438 6

6.2 Register Interference Graph (RIG):

An interference graph G= (V, E) is generated using live

interval of variables in such a way, that every edge (e ∈ E)

connects vertices (v1, v2 ∈ V) has common live interval.

Figure 7 shows the RIG consist of 7 vertices (a, b, c, d, e, f

and g) and 11 connecting edges.

Figure 7: Register Interference Graph (RIG)

6.3 Adjacency List Creation:

Table 6.1 shows the adjacency list of Graph G=(V,E)

shown in figure 7. Table contains the three columns (Edge

Number, Vertex 1 and Vertex 2).

Table 6.1: Adjacency List

Edge Number Vertex 1 Vertex 2

1 a b

2 a c

3 a d

4 b c

5 b d

6 b e

7 b f

8 c d

9 c e

10 d e

11 d f

12 e f

6.4 Complement Adjacency List:

The complement of graph G = (V, E) is a graph G’= (V,

E’), where E’ = {(i, j) | i, j ∈ V, i ≠ j and (i, j) ∉ E}. Table 6.2

shows the complement adjacency list of graph G= (V, E).

Complement adjacency list contain all the pare of vertices

where connecting edge is not present in graph.

Table 6.2: Complement Adjacency List

Edge Number Vertex 1 Vertex 2

1 a f

2 a f

3 a g

4 b g

5 c f

6 c g

7 d g

8 e g

9 f g

6.5 Tree Exploring:

It is multi step process. In this multiple trees are explored

and each tree gives single independent set. Each set of

vertices representing variables is single independent set can

be assigned to single register. Following steps executed until

all the vertices of graph G=(E,V) explored in tree form:

(1) Select any random vertex which is not included in

any maximal independent set and make it root of

tree.

(2) Explore root vertex as follows: Select all vertices

from complement adjacency list which are adjacent

to root and make all those vertices as a child node of

that root vertex.

(3) Same step need to repeat for every child node of

tree. Select only those vertices which are in against

being explored node in tree and it must be the

sibling of explored node in tree.

(4) Select the first longest path in tree as maximum

independent set.

(5) Remove the all vertices from set of vertices and

graph to update adjacency list and complement

adjacency list.

(6) Repeat step 1 to 5 through updated complement

adjacency list utile all the vertices are included in

any independent set.

Using this set of rules trees are explored as shown in

figure 8, 9, 10 and 11.

a b c

d e f

g

International Journal of Technology Research and Management
ISSN (Online): 2348-9006

 Vol 7 Issue 4 April 2020

Paper ID: 2020/IJTRM/4/2020/35438 7

Figure 8: Explored Tree for First Independent Set {a, e,

g}

Figure 9: Explored Tree for Second Independent Set {c, f

}

Figure 10: Explored Tree for third Independent Set {b}

Figure 11: Explored Tree for fourth Independent Set {d}

6.6 Sorting of MIS:

If number of registers is equal or more then number of

MIS each MIS variables can be allocated to single register.

But if number of registers is less then MIS in that case we

have select register allocation which is most suitable and

efficient. Large live interval time set show that it is used most

frequently and for long time in the program. So all the

independent sets are arranged in sorted order according to

total live interval time of individual MIS all variables. Table

6.3 shows the MIS with their live interval time in sorted

order.

Table 6.3: Sorted Live Interval Time of Individual MIS

S.No

.

MIS Live Interval Time

(Clock Cycle)

1 {d} 11

2 {a,e,g} 9

3 {c,f} 8

4 {b} 3

Register should be allocated according table 6.3 i.e. if

processor has 4 or more register than we can assign all MIS

to the registers. But if processor has 3 or less registers for use

than MISs are allotted according to sequence shown in table

6.3 (higher to low live interval time).

7. CONCLUSION

Proposed register allocation technique is design using tree

based graph coloring approach. This approach can be used in

case of un-sufficient register availability. It gives maximal

utilization of CPU registers and improves the execution time

by allotting registers to those variables which has long live

interval time. Used graph coloring approach is good for

coloring high degree graph, so it gives good performance in

the program execution where number of variables is high and

most of the variables are live at same time interval, Due to

dynamic nature of algorithm this approach can be used to

develop any type of register allocation phase of compiler.

REFERENCES

[1] Josef Eisl , Stefan Marr , Thomas Würthinger and Hanspeter
Mössenböck, “Trace Register Allocation Policies”, In Proc. ManLang

2017, September 27–29, 2017, Prague, Czech Republic.
https://doi.org/10.1145/3132190.3132209.

[2] Massimiliano Poletto and Vivek Sarkar, “Linear Scan Register
Allocation”, ACM Transactions on Programming Languages and

Systems, Vol. 21, No. 5, September 1999, Pages 895-913.

[3] Preston Briggs, “Register Allocation via Graph coloring”, PhD Thesis
RICE University Houston Texas, April 1992.

[4] Gregory J. Chaitin, “Register allocation and spilling via graph
coloring”, SIGPLAN notices, 17 (6): 98-105, June 1982. In Proc of the

ACM SIGPLAN’ 82 Symposium of Compiler Construction.

[5] G.J.. Chaitin, M.A. Auslander, A.K. Chandra, J. Coeke, M.E. Hopkins
and P.W. Markstein, "Register allocation via coloring", Computer

Languages 6, 1981, pp. 47-57

[6] Burke E. K., McCollum B., Meisels A., Petrovic S. and Qu R., “A

graph-based hyper heuristic for timetabling problems”. European
Journal of Operational Research, 176, 2007, page no. 177–192.

[7] Keith D. Cooper and Anshuman Dasgupta, “Tailoring Graph-coloring

Register Allocation For Runtime Compilation”, International

d

b

c

f

a

e

g

f

g

g

https://doi.org/10.1145/3132190.3132209

International Journal of Technology Research and Management
ISSN (Online): 2348-9006

 Vol 7 Issue 4 April 2020

Paper ID: 2020/IJTRM/4/2020/35438 8

Symposium on Code Generation and Optimization (CGO'06), 26-29
March 2006, DOI: 10.1109/CGO.2006.35

[8] David Koes and Seth Copen Goldstein, “An Analysis of Graph
Coloring Register Allocation”, Carnegie Mellon University Technical

Report No. CMU-CS-06-111, March 1990.

[9] Sevin Shamizi and Shahriar Lotfi, “Register Allocation via Graph
Coloring Using an Evolutionary Algorithm”, B.K. Panigrahi et al.

(Eds.): SEMCCO 2011, Part II, LNCS 7077, 2011, Page no. 1–8.

[10] Garey M. R., and Johnson D. S. “Computers and intractability: A guide

to the theory of NPcompleteness”. San Francisco: W.H. Freeman and

Company, 1979.

[11] Patidar H., Chakrabarti P., “A Tree-Based Graph Coloring Algorithm

Using Independent Set”. In: Panigrahi C., Pujari A., Misra S., Pati B.,
Li KC. (eds) Progress in Advanced Computing and Intelligent

Engineering. Advances in Intelligent Systems and Computing, vol 714.

Springer, Singapore, 2019.

[12] Prakash C. Sharma and Narendra S. Chaudhari,” A Tree Based Novel

Approach for Graph Coloring Problem Using Maximal Independent
Set”, Wireless Personal Communications, September 2019,

https://doi.org/10.1007/s11277-019-06778-0.

[13] Frank Pfenning, Andr´e Platzer and Rob Simmons, “Liveness
Analysis”, Lecture Notes 15-411: Compiler Design Lecture 4,

September 2014.

[14] Smith D. H., Hurley S., and Thiel S. U., Improving heuristics for the

frequency assignment problem. European Journal of Operational

Research, 107(1), 1998, page no. 76–86.

[15] Zufferey N., Amstutz P., and Giaccari P. “Graph colouring approaches

for a satellite range scheduling problem”, Journal of Scheduling, 11(4),
2008, page no. 263–277.

[16] Allwright JR, Bordawekar R, Coddington PD, Dincer K and Martin
CL. “A comparison of parallel graph coloring algorithms” ,Technical

Report SCCS-666, Northeast Parallel Architecture Center, Syracuse

University, 1995.

[17] Dr. Hussein Al-Omari and Khair Eddin Sabri “New Graph Coloring

Algorithms”, American Journal of Mathematics and Statistics 2 (4),
2006, page no. 739-741.

[18] C. Avanthay, A. Hertz, N. Zufferey “A variable neighborhood search

for graph coloring”,European Journal of Operational Research 151 (2),
2003, page no. 379–388

[19] Burke EK, McCollum B, Meisels A, Petrovic S and Qu R. “A graph-
based hyper heuristic for timetabling problems”, European Journal of

Operational Research 2007; 176, page no. 177-192.

[20] D. W. Matula and L. L. Beck, “Smallest-last ordering and clustering
and graph coloring algorithms”, JACM, 1983.

[21] E. Falkenauer, “A hybrid grouping genetic algorithm for bin packing”,
Journal of Heuristics 2 (1),1996, page no. 5–30.

[22] M. Luby, “A simple parallel algorithm for the maximal independent set
problem”, SIAM Journal on Computing 4 (1986) 1036.

[23] M. T. Jones and P. E. Plassmann, “A Parallel Graph Coloring Heuristic”
SIAM Journal of Scientic Computing 14 (1993) 654.

[24] Assefaw Hadish Gebremedhin and Fredrik Manne “Scalable parallel

graph coloring Algorithms”, CONCURRENCY: PRACTICE AND

EXPERIENCE Concurrency: Pract. Exper. 2000; 12:1131–1146

