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Abstract: In recent times, technologies such as machine learning and deep learning have played a vital role 
in providing assistive solutions to a medical domain’s challenges. They also improve predictive accuracy 

for early and timely disease detection using medical imaging and audio analysis. Due to the scarcity of 

trained human resources, medical practitioners are welcoming such technology assistance as it provides a 

helping hand to them in coping with more patients. Apart from critical health diseases such as cancer and 

diabetes, the impact of respiratory diseases is also gradually on the rise and is becoming life-threatening 

for society. The early diagnosis and immediate treatment are crucial in respiratory diseases, and hence the 

audio of the respiratory sounds is proving very beneficial along with chest X-rays. The presented research 

work aims to apply Convolutional Neural Network based deep learning methodologies to assist medical 

experts by providing a detailed and rigorous analysis of the medical respiratory audio data for Chronic 

Obstructive Pulmonary detection This study proposes a computerized method for classifying asthma and 

chronic obstructive pulmonary disease (COPD) based on lung sound (LS) analysis using the ICBHI dataset. 

The approach involves denoising LS recordings to enhance data quality, followed by Empirical Mode 

Decomposition (EMD) for effective signal processing and feature extraction. We will leverage GoogLeNet 

deep convolutional neural networks (CNNs) to classify LS recordings as either healthy or diseased, 

employing backpropagation and Stochastic Gradient Descent with Momentum (SGDM) for training. The 

model’s performance will be evaluated using metrics such as True Positive (TP), True Negative (TN), False 

Positive (FP), False Negative (FN), accuracy, sensitivity, specificity, and the Area under the Curve (AUC) 

of the Receiver Operating Characteristic (ROC) curve, aiming to enhance automated detection and 

diagnosis of respiratory condition. 
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1.  INTRODUCTION 

Lung diseases are a major cause of global morbidity and 

mortality, including asthma, COPD, lung infections like 

pneumonia, lung cancer, bronchitis, and other breathing 

problems [1, 2]. Lung sounds can be indicative of most lung 

and respiratory diseases [3]. When there is no  

Respiratory disorder, normal breathing sounds are heard, 

whereas abnormal breathing sounds such as wheezing or 

crackling are detected when there is a lung disease [4, 5]. For 

this reason, regular or routine monitoring of breathing sounds 

is essential for symptom prevention and alleviation, as well 

as for the early detection of various respiratory diseases 

Typically, respiratory abnormalities are diagnosed by 

spirometry and auscultation [86]. While spirometry is 

impossible for certain groups, such as children, and is 

difficult to use practically to monitor a long-term pattern of 

patient condition in non-clinical settings [7], auscultation is 

non-invasive, inexpensive, and easy to use [8]. Medical 

professionals listen to these sounds to evaluate and diagnose 
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patients however, conventional auscultation requires 

considerable training and expertise, and its quality depends 

on the doctor’s experience and hearing. The 

misunderstanding of breathing sounds and making incorrect 

diagnoses is not rare among medical students.To overcome 

the limitation of conventional auscultation, various methods 

such as neural networks classifiers and NMF are suggested in 

many cases in order to assist in the automatic detection and 

classification of adventitious lung sounds .Among them, deep 

learning algorithms train the machine to automatically learn 

the characteristics of the signals or waveforms of lung sounds 

to recognize abnormal lung or breathing sounds (wheezing, 

crackling) [8]. The most common deep learning algorithm 

used for lung sound classification is a convolutional neural 

network (CNN) or recurrent neural network (RNN) model 

that extracts breathing sound features from a two-

dimensional spectrogram image, or a combination of the two, 

a convolutional-recurrent neural network (CRNN).The 

accuracy of the models ranges from 63% to 99% and in 

general, the CNN-based model has the highest accuracy. 

Incorporating AI-based lung sound analysis into automated 

diagnosis systems has been suggested to determine the 

degree of airway inflammation [9] or the risk of a number of 

lung diseases .Recently, efforts have been made to collect 

breathing sounds from smartphones or real-time lung sounds 

from wearable devices to develop automated AI-based 

solutions for lung sound analysis and classification. Through 

this technological advancement, abnormal respiratory and 

asthmatic symptoms could be detected or diagnosed at an 

early stage via real-time self-monitoring or telemedicine 

[10].However, most existing models focus on the automatic 

diagnosis of single recorded data, and applications to real-

time monitoring data are still limited .They tended to be 

developed based on the learning data collected by 

auscultation for a short period of 10 to 70 s and labeled by 

clinicians [11]. Much of the previous work focused on 

addressing methodological challenges associated with noise 

cancellation or reduction detection of the breathing section, 

or binary classification of an individual cycle of respiration. 

Due to a lack of adaptability for real-time, continuous long-

term signals, most lung sound classification algorithms have 

not been widely implemented in practice, with limited 

applicability in self-symptom management or telemedicine 

[12]. Considering that respiratory patterns represent the 

holistic physical and psychological state of humans, not only 

the presence of abnormal sounds but also the location, 

duration, and relationships of a sequence of respiration 

cycles, including atypical breathing activities, could serve as 

important reference data for clinicians and patients to 

diagnose and monitor lung diseases.To provide 

comprehensive information about the lung’s breathing 

functionality, which may not be well noticed or recognized in 

a clinical setting, the pattern and frequency of abnormal lung 

sounds within a relatively long time must be analyzed rather 

than most of the existing models for determining the presence 

or absence of abnormalities at each respiratory unit. 

 
Figure 1: shows the overall training and testing methodology 

and is explained as given below: 

 

Data Acquisition: the lung sounds that are offered as input 

was recorded from normal as well as abnormal male and 

female patients with various kinds of respiratory dysfunctions 

such as: COPD, Asthma, lower and upper respiratory tract 

infection (LRTI, URTI). Two research teams from Portugal 

and Greece created a database of respiratory sounds from 

where 126 input recordings has been taken (ICBHI, 

2017 Challenge). The data samples include both respiratory 

sounds of healthy individuals as well as of patients who were 

having the repiratory ailments. The patients span from all age 

groups, including young children, adults, and senior citizens. 

The dataset consists of a total of 5.5 h of recordings 

containing 6898 respiratory cycles, of which 1,864 contain 

crackles, 886 contain wheezes and 506 contain both crackles 

and wheezes, in 920 annotated audio samples from 126 

subjects. The cycles were annotated by respiratory experts as 

including crackles, wheezes, a combination of them, or no 

adventitious respiratory sounds. The recordings were 

collected using heterogeneous equipment and their duration 

ranged from 10 s to 90 s. The chest locations from which the 

recordings were acquired is also provided. Noise levels in 

some respiration cycles is high, which simulate real life 

conditions. 

Data Preprocessing: the dataset contained a lot of 

irregularities and unstructured data. To normalize the data, 

we trimmed/padded the audio files to a length of 20 seconds 

using a Python library Librosa (Librosa, 2020). 

Feature Extraction: for the feature extraction, we 

calculated five features. The features were Mel-Frequency 
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Cepstral Coefficients (mfcc), melspectrogram (Mel-

Spectrogram), Chromagram calculated from the 

waveform/power spectrogram (chroma_stft), Constant-Q 

Chromagram (chroma_cqt) and chroma_cens (Chroma 

Energy Normalized Variant (CENS)). MFCCs are 

coefficients that collectively make up an mel-frequency 

cepstrum (MFC). An MFC is a representation of the short-

term power spectrum of a sound, based on a linear cosine 

transform of a log power spectrogram on a non-linear mel 

scale of frequency. These features represent phonemes 

(which are the distinct units of sound) as the shape of the 

vocal tract (which is responsible for sound generation) is 

manifest in them. This makes MFCC a great feature to 

consider for respiratory audio analysis. In order to obtain the 

Mel-Spectrogram, we take samples of air pressure over time, 

map it from the time domain to the frequency domain using 

the fast Fourier Transform and we convert the freuqnecy to a 

mel scale and the color dimension to the amplitude. It 

represents short-term power spectrum of a sound. Chroma-

based features (like the ones we mentioned above) are also 

referred to as ―pitch class profiles‖, are a powerful set of 

features for analysing music whose pitches can be 

categorized. Since the respiratory sounds also vary quite 

distinctly in pitch, Chroma makes it a great feature for our 

user case.CENS features are robust to dynamics, timbre, and 

articulation, making these commonly used in audio matching 

and retrieval applications. We gave each of the features the 

―n‖ value (like n_mfcc’s in mfcc and n_chroma bins in 

chroma features) as 40 to maintain consistency across the 

features. 

Augmentation: we used different audio augmentation 

methods on the samples to increase the number of non-

COPD samples since the number of COPD samples was 

almost four times the number of non-COPD samples. We 

applied the following techniques for the audio augmentation. 

1. Lung Sound Waveforms 

2. The Regular Lung Sound 

The regular lung sound waveforms can be divided into: 

Vesicular breath or normal lung sound: The sound is 

more high-pitched during inhalation than exhalation, and 

more intense; it is also continuous, rustling in quality, low-

pitched, and soft. 

Bronchial sound breathing: The sound is high-pitched, 

hollow, and loud. However, it could be a sign of a health 

problem if a doctor hears bronchial breaths outside the 

trachea. 

Normal tracheal breath sound: It is high-pitched, harsh, 

and very loud. 

A sample of a normal lung sound waveform is shown 

in Figure 2. 

Figure 2. Sample of a normal lung sound waveform [6]: 

vesicular—normal (upper), bronchial (middle), normal 

tracheal (lower). 

 

3. The Wheezing Lung Sound 

The wheezing sound is a continuous and high-pitched 

sound and is distinguished into: 

Squawks: A squawk is a momentary wheeze that happens 

while breathing in. 

Wheezes with numerous notes are called polyphonic 

wheezes, and they happen during exhalation. The pitch of 

them may also rise as exhalation nears its conclusion. 

Monophonic wheezes can last for a long time or happen 

during both phases of respiration. They can also have a 

constant or variable frequency. 

4. Crackles Sound 

Generally speaking, crackles can be heard while inhaling. 

They may have a bursting, bubbling, or clicking sound to 

them. 

Coarse: Coarse crackles are louder, lower in pitch, and 

linger longer in the larger bronchi tubes than fine crackles do. 

Although they usually occur during inhalation, they can also 

occur during exhalation. 

Medium: These are brought on by mucus bubbling up in 

the two tiny bronchi, which carry air from the trachea to the 

lungs. The bronchi are divided into progressively smaller 

channels that ultimately lead to alveoli, or air sacs. 

Fine: These delicate, high-pitched noises are particular to 

narrow airways. Fine crackles may occur more frequently 

than coarse crackles during an intake than during an 

exhalation. 

5. Rhonchi Sound 

Low-pitched, continuous noises called rhonchi have a 

snoring-like quality. Rhonchi can happen when exhaling or 

when exhaling and inhaling, but not when inhaling only. 

They take place as a result of fluid and other secretions 

moving about in the major airways. 

6. . Stridorand Pleural Rub Sounds 

A high-pitched sound called stridor forms in the upper 

airway. The sound is caused by air squeezing through a 

constricted portion of the upper respiratory system. 

The rubbing and cracking sound known as "pleural rub" is 

caused by irritated pleural surfaces rubbing against one 

another. 

For efficient respiratory infection therapy, early diagnosis 

and patient monitoring are critical. In clinical practice, lung 

auscultation, or paying attention to the patient’s lung sound 

by means of stethoscopes, is used to diagnose respiratory 

disorders. Lung sounds are typically characterized as normal 

or adventitious. The majority of frequent adventitious lung 
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noises heard above the usual signals are crackles, wheezes, 

and squawks, and their presence typically suggests a 

pulmonary condition [7, 8, 9]. 

 

2. RELATED WORK 

 Fan Wanget.al. (2023) [13] when it comes to diagnosing 

a respiratory disorder, lung sound is an essential reference 

factor with significant importance. Automatic lung sound 

classification systems, in particular, have the potential to be 

of tremendous use in circumstances in which health care 

personnel are absent. During the course of this work, we 

perform a preprocessing step on the initial lung sound signal 

in order to subtract noise interference from the signal. After 

the sound signal has been processed, a spectrogram is 

produced by applying a Fourier transform with a limited 

temporal dimension. A deep learning network that is based 

on ResNet is used to classify the spectrogram, which causes 

the respiratory cycle to be classified into four distinct 

categories: normal, crackle, wheeze, and both. The breathing 

cycles are extended to a uniform fixed time in order to 

address the problem of different time scales in spectrograms. 

Validation of the suggested method was accomplished 

through the utilization of the official benchmark standards of 

the ICBHI 2017 challenge as well as the dataset partitioning 

strategy. The classification of the respiratory cycle is a 

promising area for the suggested method, as demonstrated by 

the results of experiments and comparisons. 

Wei-Bang Ma (2022)[14] The diagnostic process for 

respiratory disorders can be accomplished in a 

straightforward, low-cost, and non-invasive manner with the 

use of lung sound therapy. However, the experience of each 

individual physician may vary, which then leads to diagnostic 

results that are not consistent with one another. A deep 

learning model for identifying lung sounds was developed by 

us in order to address this issue. This model has the potential 

to offer medical professionals a more reliable reference for 

accurate diagnosis. They suggested a classification system 

that was equipped with efficient pre-processing methods and 

a DenseNet169 CNN model. This system was based on a 

lung sound dataset that was gathered from children ranging in 

age from one month to eighteen years old. 89.0% for task 1.1, 

90.9% for task 1.2, 83.8% for task 2.1, and 67.3% for task 

2.2 are the outcomes of four separate categorization tasks, 

each of which is calculated according to a total score 

specified rule. 

 

3. PROPOSED METHODOLOGY 

The suggested methodology seeks to create a 

computational technique for categorizing instances of asthma 

and chronic obstructive pulmonary disease (COPD) by 

analyzing lung sound (LS) patterns. We will utilize the 

publicly available ICBHI dataset to gather the necessary LS 

recordings. Firstly, to enhance the quality of the LS data, we 

will perform denoising techniques. This step is crucial for 

removing unwanted noise and artifacts from the recordings, 

ensuring the accuracy of subsequent analyses. Next, we will 

employ Empirical Mode Decomposition (EMD) analysis for 

signal processing. EMD is particularly useful for 

decomposing non-stationary and nonlinear signals like LS 

recordings into intrinsic mode functions, facilitating feature 

extraction and classification. To perform classification, they 

will employ the GoogLeNet architecture, a deep 

Convolutional Neural Network renowned for its efficacy in 

picture categorization assignments. We will utilize ResNet-

50 for our LS data, capitalizing on its capacity to acquire 

discriminative features from intricate data. To train the 

network, we will employ a neural network (NN) approach, 

utilizing backpropagation and SGDM optimization 

algorithms to minimize classification errors. The dataset will 

be split into 70% for training and 30% for testing; ensuring 

robust evaluation of the model's performanceThe 

classification output will categorize LS recordings as either 

healthy or diseased, providing valuable insights into the 

presence of asthma or COPD. 

Dataset description  

https://dataverse.harvard.edu/dataset.xhtml?persistentId=d

oi:10.7910/DVN/HT6PKI The ICBHI 2017 respiratory sound 

database is utilized for the purpose of training and evaluating 

the deep learning model. The compilation was initially 

created to provide assistance for the scientific challenge held 

at the International Conference on Biomedical Health 

Informatics - ICBHI 2017. The present iteration of this 

database is provided without charge for the purpose of 

research.[15] 
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Figure 3: proposed flow diagram 

 

GoogLeNet 

The original GoogLeNet (Inception-v1) architecture, 

detailing each component's purpose and characteristics: 

1. Input Layer: 

 Shape: Input images with dimensions 

typically standardized to a fixed size (e.g., 

224x224x3 for RGB images). 

2. Convolutional Layers: 

 Several convolutional layers are stacked at 

the beginning of the network to extract 

low-level features. 

 These layers employ small receptive fields 

(e.g., 3x3) and are followed by rectified 

linear unit (ReLU) activations to introduce 

non-linearity. 

3. Inception Modules: 

 The fundamental components of 

GoogleNet are the inception modules, 

which enable the network to efficiently 

capture characteristics at various spatial 

scales. 

 Each inception module consists of parallel 

convolutional and pooling operations of 

varying sizes (1x1, 3x3, 5x5), followed by 

concatenation. 

 These modules enable the network to learn 

diverse and rich representations of the 

input data while optimizing computational 

efficiency. 

 The output of each inception module 

typically undergoes batch normalization 

and ReLU activation. 

4. Pooling Layers: 

 Max pooling layers are interspersed 

throughout the network to reduce spatial 

dimensions and introduce translation 

invariance. 

 These layers downsample the feature maps, 

helping to gradually increase the receptive 

field of the network. 

5. Fully Connected Layers (FC): 

 Towards the end of the network, global 

average pooling is often employed to 

reduce the spatial dimensions of the feature 

maps to a vector. 

 The resulting vector is then fed into one or 

more fully connected layers, which serve as 

the classifier. 

 These fully connected layers typically have 

a large number of parameters and are 

responsible for learning high-level 

representations of the input data. 

6. The last fully linked layer often employs softmax 

activation to generate class probabilities. 

Output Layer: 

 The output layer consists of a softmax 

function, which converts the raw scores 

produced by the previous layers into class 

probabilities. 

 Each node in the output layer corresponds 

to a specific class in the classification task. 

 During training, the network's predictions 

are compared to the ground truth labels 

using a loss function (e.g., cross-entropy 

loss), and the parameters are optimized 

using backpropagation. 

Continuous Wavelet Transform (CWT) 

The Continuous Wavelet Transform (CWT) is a 

mathematical technique employed in signal processing and 

analysis to express a signal in relation to its time-frequency 

characteristics. The Continuous Wavelet Transform (CWT) 

[16]enables simultaneous analysis of time and frequency, 
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making it valuable for discovering localized characteristics in 

signals that exhibit variations in both time and frequency 

domains. The mathematical formula representing the 

Continuous Wavelet Transform (CWT) of a signal (𝑡)x(t) in 

relation to a wavelet function 𝜓(𝑡)ψ(t) is expressed as: 

 
Where: 

CWTx(a,b) is the Continuous Wavelet Transform of the 

signal x(t) at scale 𝑎a and translation b. 

a represents the scale parameter, which controls the width 

of the wavelet and thus the frequency resolution. 

b represents the translation parameter, which shifts the 

wavelet along the time axis. 

ψ(t) is the complex conjugate of the analyzing wavelet 

function. 

∣a∣ is a normalization factor to ensure energy conservation. 

The CWT is essentially a convolution of the signal with 

scaled and translated versions of the mother wavelet function. 

By varying the scale and translation parameters, the CWT 

provides a time-frequency representation of the signal, 

revealing how its frequency content evolves over time.[17-18] 

In practice, the CWT is often implemented using 

discretized scales and translations, resulting in a discrete set 

of CWT coefficients. The discretized CWT can be 

represented as: 

 
Where: 

 𝑛n and 𝑚m represent the discrete indices 

corresponding to the scale and translation 

parameters, respectively. 

 an and bn are the discretized scale and translation 

values. 

The CWT can be computed efficiently using fast 

algorithms such as the Fast Wavelet Transform (FWT) or the 

Fast Fourier Transform (FFT)-based methods. These 

algorithms exploit the convolution theorem and other 

properties of wavelets to accelerate the computation of the 

CWT coefficients. 

The CWT decomposes the input signal into time-

frequency representations at different scales 𝑎a and 

translations 𝑏b. By varying the scale and translation 

parameters, the CWT captures both localized and global 

features of the signal across different time and frequency 

resolutions. 

COPD Signal Result  

 

 
Figure 4: Input signal chronic obstructive pulmonary disease 

(COPD) 

 

 
Figure 5: Signal frequencies 

 

 
Figure 6: Power of the CWT coefficients 
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Asthma signal result  

 

 
Figure 7: asthma Signal 

 

 
Figure 8: Signal frequency asthma signal 

 

 
Figure 9: Power of the CWT coefficients 

 
 

 

4. EVALUATION MATRIX 

A confusion matrix is essential for evaluating the efficacy 

of the classifier. This matrix provides the count of accurate 

and inaccurate predictions based on the known values. The 

observed outcome is indeed true, and the model correctly 

predicted it as true; this is known as a true positive (TP). A 

true negative (TN) occurs when both the actual values and 

the anticipated values are erroneous. On the other hand, a 

false positive (FP) refers to a situation where the actual value 

is false, but the model incorrectly predicted it as true. A 

"False Negative" (FN) occurs when the model incorrectly 

predicts that a true value is false.[19-20] 

Intersection over Union (IOU): IOU, If one just wish to 

quantify the extent of overlap between two bounding boxes 

or masks in a segmented image, simply can utilize the 

Jaccard Index, also referred to as the Jaccard Index. The 

region where the predicted segmentation and the ground truth 

overlap is called the area of utility, also known as 

Intersection over Union (IoU). This region is separated by the 

area where the anticipated segmentation and the ground truth 

do not overlap, which is called the area of union. The range 

of this specific statistic spans from 0 to 1, where 0 represents 

no overlap and 1 represents perfect overlap. With a threshold 

of 0.5, our goal is to achieve an IOU value that is at least 97% 

greater than the present value 

 
Figure 10: confusion matrix 
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Figure 11: Model evaluation parameters 

 

Green region: Our model estimates 1 (lesion mask) and 

the ground truth is 1. (True Positive, TP) 

Blue region: Our model estimates 1 (lesion mask) but the 

ground truth is 0. (False Positive, FP) 

Yellow region: Our model estimates 0 (absence of lesion) 

but the ground truth is 1. (False Negative, FN) 

Gray region: Our model estimates 0 (absence of lesion) 

and the ground truth is 0. (True Negative, TN) 

Accuracy: A model's accuracy can be defined as the 

frequency with which it has correctly predicted the value 

based on the information that was provided. When it comes 

to FP and FN, however, it does not provide any specific 

information. There are certain applications in which the F1 

score and recall play a very significant role. These 

applications involve FP and FN that are significant. [21]The 

formula that is described in Equation 1 is used to determine 

the accuracy of the calculation. 

 

Accuracy =
True Positive + True Negative

True Positive + True Negative + False Positive + False Negative
                equation 1 

 

Precision: This evaluation parameter provides 

information regarding the frequency with which a model 

predicts true positives. A low accuracy value indicates that 

there are a significant number of false positives. The 

precision calculation formula is shown in Equation 2, which 

may be found here. 

Precision =
TP

TP + FP
                   equation 2 

Recall: It is possible to obtain information on the 

frequency with which a model predicts false negatives by 

monitoring this parameter. The model predicted a significant 

amount of false negatives, as seen by the low recall value. 

Recall can be calculated using the formula that is provided in 

Equation 3. 

Recall =
TP + TN

TP + FN
                  equation 3 

Dice Coefficient (F1 Score): The dice coefficient is a 

measurement that determines how much overlap there is 

between two masks. One means that there is no overlap, 

whereas zero suggests that there is a perfect overlap. Two 

times the Area of Overlap should be divided by the total 

number of pixels in both images in order to arrive at the Dice 

Coefficient estimate. There is a correlation between this 

statistic and IOU. In order to accomplish our objective, we 

need to earn an F1 score of 95% or above. 

F1 Score: Both precision and recall are taken into 

consideration when determining the F1 score. To put it 

another way, a high F1 score indicates a low number of false 

positives and false negatives, which further suggests that the 

model is accurately recognizing true threats and is not  

 

troubled by false alarms. In Equation 4, the formula that is 

used to calculate the F1 score is presented. 

F1 score = 2 ∗
Precision ∗ Recall

Presiion + Recall
                    equation 4 

 

 

Table 1 Comparison Result for COPD Dataset and Asthma 

Dataset 

COPD Dataset COPD Dataset ASTHMA 
Dataset 

Accuracy 99.6 99.9 

Sensitivity 95.36 92.36 

Specificity 96.23 94.25 

Precision 94.23 93.26 

 

Table 2 Comparison Result For COPD Dataset and Asthma 

Dataset 

 Accuracy 

Proposed work 99.6 

Existing work 99.3 
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5. CONCLUSION 

The suggested methodology offers a thorough approach to 

creating a computerized system for categorizing asthma and 

chronic obstructive pulmonary disease (COPD) cases using 

lung sound (LS) analysis. By leveraging denoising 

techniques and Empirical Mode Decomposition (EMD) 

analysis for signal processing, we aim to enhance the quality 

of LS data and extract discriminative features from non-

stationary and nonlinear signals. Utilizing the GoogLeNet 

architecture adapted to LS data and training the network with 

a neural network approach using SGDM optimization, we 

seek to achieve accurate classification of healthy and 

diseased LS recordings. Evaluation using standard metrics 

such as True Positive (TP), True Negative (TN), False 

Positive (FP), False Negative (FN), accuracy, sensitivity, 

specificity, and Area under the Curve (AUC) of the Receiver 

Operating Characteristic (ROC) curve will provide a robust 

assessment of the model's performance in distinguishing 

between asthma and COPD cases based on LS analysis. 

Overall, this methodology holds promise for advancing 

computer-aided diagnosis in respiratory diseases and 

providing valuable insights for clinical decision-making. 
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